GCSE Physics Unit 1 Foundation

Equations	
$current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
energy transferred = power × time	E = Pt
power = voltage × current	P = VI
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
$density = \frac{mass}{volume}$	$ \rho = \frac{m}{V} $
units used (kWh) = power (kW) × time (h) cost = units used × cost per unit	
wave speed = wavelength × frequency	$v = \lambda f$
$speed = \frac{distance}{time}$	
$pressure = \frac{force}{area}$	$p = \frac{F}{A}$
change in specific heat change in thermal energy = mass × capacity × temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a specific latent change of state = mass × heat	Q = mL
$V_1 = \text{voltage across the primary coil} \\ V_2 = \text{voltage across the secondary coil} \\ N_1 = \text{number of turns on the primary coil} \\ N_2 = \text{number of turns on the secondary coil} $	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

Prefix	Symbol	Conversion factor	Multiplier
milli	m	divide by 1000	1×10^{-3}
centi	С	divide by 100	1 × 10 ⁻²
kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1 × 10 ⁶

GCSE Physics Unit 1 Higher

Equations

$current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
total resistance in a parallel circuit	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$
energy transferred = power × time	E = Pt
power = voltage × current	P = VI
power = current ² × resistance	$P = I^2 R$
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
$density = \frac{mass}{volume}$	$ \rho = \frac{m}{V} $
units used (kWh) = power (kW) \times time (h) cost = units used \times cost per unit	
wave speed = wavelength \times frequency	$v = \lambda f$
$speed = \frac{distance}{time}$	
$pressure = \frac{force}{area}$	$p = \frac{F}{A}$
p = pressure $V = volume$ $T = kelvin temperature$	$\frac{pV}{T}$ = constant
	$T/K = \theta / ^{\circ}C + 273$
change in thermal energy = mass × specific heat change in capacity × temperature	$\Delta Q = mc\Delta\theta$
thermal energy for a specific latent change of state = mass × heat	Q = mL
force on a conductor (at right angles to a magnetic field) = magnetic field strength × current × length	F = BIl
$V_1 = \text{voltage across the primary coil} \\ V_2 = \text{voltage across the secondary coil} \\ N_1 = \text{number of turns on the primary coil} \\ N_2 = \text{number of turns on the secondary coil}$	$\frac{V_1}{V_2} = \frac{N_1}{N_2}$

Prefix	Symbol	Conversion factor	Multiplier
pico	р	divide by 1000000000000	1 × 10 ⁻¹²
nano	n	divide by 1000000000	1 × 10 ⁻⁹
micro	μ	divide by 1000000	1 × 10 ⁻⁶
milli	m	divide by 1000	1 × 10 ⁻³
centi	С	divide by 100	1 × 10 ⁻²

kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1×10^{6}
giga	G	multiply by 1000000 000	1 × 10 ⁹
terra	Т	multiply by 1000000000000	1 × 10 ¹²

GCSE Physics Unit 2 Foundation

Equations

$speed = \frac{distance}{time}$	
$acceleration [or deceleration] = \frac{change in velocity}{time}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
resultant force = mass × acceleration	F = ma
weight = mass × gravitational field strength	W = mg
work = force × distance	W = Fd
force = spring constant × extension	F = kx
momentum = mass × velocity	p = mv
$force = \frac{change in momentum}{time}$	$F = \frac{\Delta p}{t}$
u = initial velocity $v = final velocity$ $t = time$ $a = acceleration$ $x = displacement$	$v = u + at$ $x = \frac{u + v}{2} t$
moment = force × distance	M = Fd

Prefix	Symbol	Conversion factor	Multiplier
milli	m	divide by 1000	1 × 10 ⁻³
centi	С	divide by 100	1 × 10 ⁻²
kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1 × 10 ⁶

GCSE Physics Unit 2 Higher

Equations

Equations	
$speed = \frac{distance}{time}$	
$acceleration [or deceleration] = \frac{change in velocity}{time}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
distance travelled = area under a velocity-time graph	
resultant force = mass × acceleration	F = ma
weight = mass \times gravitational field strength	W = mg
work = force × distance	W = Fd
$kinetic energy = \frac{mass \times velocity^2}{2}$	$KE = \frac{1}{2} mv^2$
change in potential energy = mass × gravitational field × change in strength × height	PE = mgh
force = spring constant × extension	F = kx
work done in stretching = area under a force-extension graph	$W = \frac{1}{2} Fx$
momentum = mass × velocity	p = mv
$force = \frac{change in momentum}{time}$	$F = \frac{\Delta p}{t}$
$u = initial \ velocity$	v = u + at
$v = final \ velocity$	$x = \frac{u+v}{2} \ t$
t = time	_
a = acceleration	$x = ut + \frac{1}{2} at^2$
x = displacement	$v^2 = u^2 + 2ax$
$moment = force \times distance$	M = Fd

Prefix	Symbol	Conversion factor	Multiplier
pico	р	divide by 1000000000000	1×10^{-12}
nano	n	divide by 1000000000	1×10^{-9}
micro	μ	divide by 1000000	1 × 10 ⁻⁶
milli	m	divide by 1000	1 × 10 ⁻³
centi	С	divide by 100	1 × 10 ⁻²

kilo	k	multiply by 1000	1×10^{3}
mega	М	multiply by 1000000	1 × 10 ⁶
giga	G	multiply by 1000000 000	1 × 10 ⁹
terra	Т	multiply by 1000000000000	1 × 10 ¹²