

WJEC GCE AS/S LEVEL in CHEMISTRY

ACCREDITED BY WELSH GOVERNMENT

SPECIMEN ASSESSMENT MATERIALS

Teaching from 2015

500 ml

This Welsh Government regulated qualification is not available to centres in England.

Contents

		Page
Question Pa	apers	
AS UNIT 1:	The Language of Chemistry, Structure of Matter and Simple Reactions	5
AS UNIT 2:	Energy, Rate and Chemistry of Carbon Compounds	23
A2 UNIT 3:	Physical and Inorganic Chemistry	40
A2 UNIT 4:	Organic Chemistry and Analysis	57
A2 UNIT 5:	Practical Examination Experimental Task: Instructions to Teachers/Exams Officers Setting up Instructions Tests 1 and 2 Practical Methods and Analysis Task	76 79 83 90
DATA BOO	KLET	100
Mark Schen	nes	
AS UNIT 1:	The Language of Chemistry, Structure of Matter and Simple Reactions Summary of Assessment Objectives	104 115
AS UNIT 2:	Energy, Rate and Chemistry of Carbon Compounds Summary of Assessment Objectives	116 126
A2 UNIT 3:	Physical and Inorganic Chemistry Summary of Assessment Objectives	127 138
A2 UNIT 4:	Organic Chemistry and Analysis Summary of Assessment Objectives	139 152
A2 UNIT 5:	Experimental Task Practical Methods and Analysis Task Summary of Assessment Objectives	153 156 161

Candidate Name	Centre Number			Candidate Number			er			
						0				

GCE AS/A LEVEL CHEMISTRY

AS UNIT 1

The Language of Chemistry, Structure of Matter and Simple Reactions

SPECIMEN PAPER

1 hour 30 minutes

	For Examiner's use only					
	Question	Mark Awarded				
Section A	1. to 6.	10				
Section B	7.	16				
	8.	15				
	9.	17				
	10.	15				
	11.	7				
	Total	80				

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a data sheet and a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 9.

SECTION A

Answer **all** questions in the spaces provided.

1.	A radioactive isotope of boron has a half-life of 5×10^{-1}	³ seconds. Calculate how long	it
will tak	e for 0.32 g of the isotope to decay to 0.04 g.	[1]	

It has a relative molecular mass of 52.

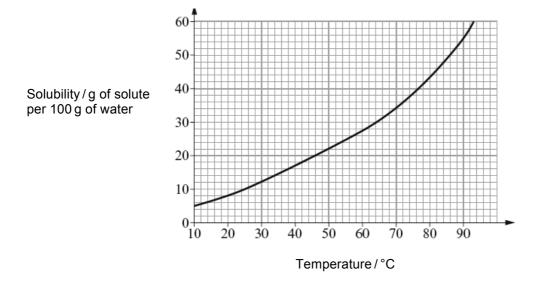
- (a) State the molecular formula of cyanogen. [1]
- (b) State the empirical formula of cyanogen. [1]
- 4. Sulfur hexafluoride reacts with hydrogen sulfide in a redox reaction.

 SF_6 + $3H_2S \rightarrow 6HF$ + 4S

Complete the table below, giving the oxidation states of the sulfur atoms present and use these to explain how hydrogen sulfide is the reducing agent in this reaction.

[2]

Oxidation state of sulfur in SF_6	Oxidation state of sulfur in H_2S	Oxidation state of sulfur in sulfur, S

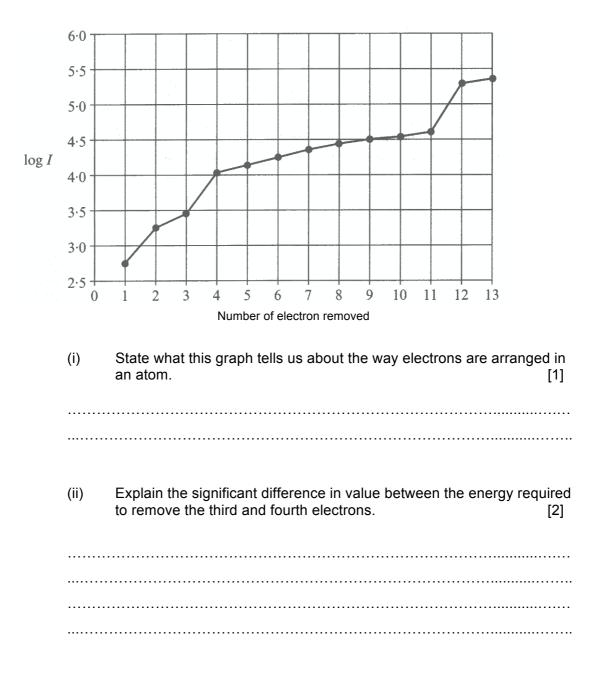

.....

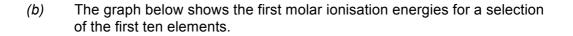
5. Calculate the pH of a 0.01 mol dm^{-3} solution of sulfuric acid. [2]

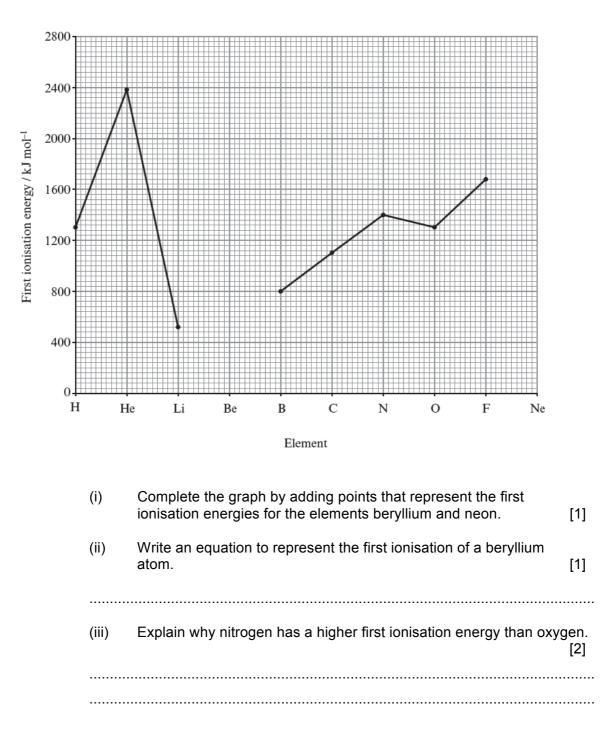
pH =

6. A solid was prepared in an impure state and it was then purified by recrystallisation. The solid was dissolved in the minimum amount of water at 90 °C and the solution was cooled to 25 °C.

The solubility curve for the solid in water is shown below.


Use the solubility curve to find the maximum mass of solid that would form from 20 g of water cooled from 90 °C to 25 °C. [1]


Maximum mass = g


SECTION B

Answer all questions in the spaces provided.

7. *(a)* The graph below shows a plot of the logarithm of the successive ionisation energies of an element.

(c)	(i)	Electrons are thought to exist in shells. Explain how both parts (<i>a</i>) and (<i>b</i>) provide evidence for this theory. [2]
	(ii)	Compare the evidence for electronic structure from parts (a) and (b) to decide which gives a clearer picture of electronic structure. [1]
(d)	The	diagram below shows the first four lines of the atomic spectrum for

(d) The diagram below shows the first four lines of the atomic spectrum for hydrogen in the ultra-violet region of the electromagnetic spectrum (part of the Lyman series).

		_

line A

(i) Line A represents the convergence limit of this series and is found at a wavelength of 91.2×10^{-9} m.

Use the equation below to calculate the frequency, f, of line A and hence its energy, E, in Joules (J). Show your working. [3]

 $c = f \times \lambda$

c = $2.99 \times 10^8 \text{ m s}^{-1}$ h = $6.63 \times 10^{-34} \text{ J s}$

Energy = J

(ii) There are 6.02×10^{23} hydrogen atoms in 1 mol. Use your answer to part (i) and this information to calculate the energy in kJ mol⁻¹. [2]

 $Energy = \dots kJ mol^{-1}$

(iii)	State the significance of the value calculated in part (ii) and	
	represented by the convergence limit of the Lyman series.	[1]

.....

- 8. This question involves two different methods to determine the percentage of sodium carbonate in a mixture.
 - (a) Elinor is given the mixture and she carries out a two-step experiment to determine the percentage of sodium carbonate in the mixture.

In step 1, she accurately weighs 2.05 g of the mixture, transfers all of it to an appropriate container, adds 100 cm^3 of distilled water to ensure that it all dissolves and accurately makes up the solution to 250 cm³ with distilled water.

In step 2, she pipettes 25.0 cm^3 of the solution into a container, adds 3 drops of an appropriate indicator and titrates this solution with hydrochloric acid of concentration 0.100 mol dm⁻³. She repeats this procedure three times and obtains the following results.

Titration	1	2	3	4
Final reading (cm ³)	23.50	24.10	24.10	23.40
Initial reading (cm ³)	0.40	0.15	0.90	0.25
Titre (cm ³)				

- (i) Name a suitable container to make up the solution that could be used in step 1. [1]
-

(ii) Calculate the mean titre that Elinor should use in her calculations. [2]

Mean titre = \dots cm³

(iii) The equation for the reaction between sodium carbonate and hydrochloric acid is given below.

 Na_2CO_3 + 2HCI \rightarrow 2NaCI + H₂O + CO₂

I. Use your answer to part (ii) to calculate the number of moles of HCl used in the titration and hence deduce the number of moles of Na₂CO₃ in 25.0 cm³ of the solution in step 2. [2]

Number of moles of Na₂CO₃ = mol

II. Calculate the percentage of Na₂CO₃ in the original mixture. [3]

Percentage of $Na_2CO_3 = \dots \%$

(b) In a separate experiment Robert was asked to analyse the mixture by means of a precipitation reaction.

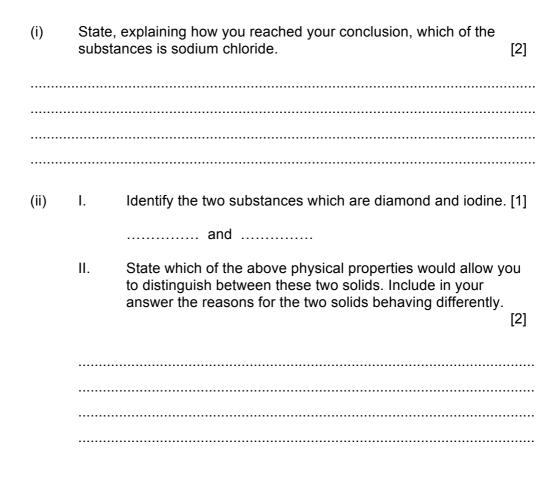
Robert measured exactly 2.1 g of the mixture and dissolved it in an excess of distilled water. To this solution he added an excess of barium nitrate solution. A precipitate of barium carbonate, $BaCO_3$, was formed according to the following equation.

 $Na_2CO_3(aq) + Ba(NO_3)_2(aq) \rightarrow BaCO_3(s) + 2NaNO_3(aq)$

The precipitate was filtered. The mass of barium carbonate formed in the experiment was 2.3 g.

(i) Explain why the volume of distilled water used to dissolve the original mixture was not measured accurately. [1]

.....

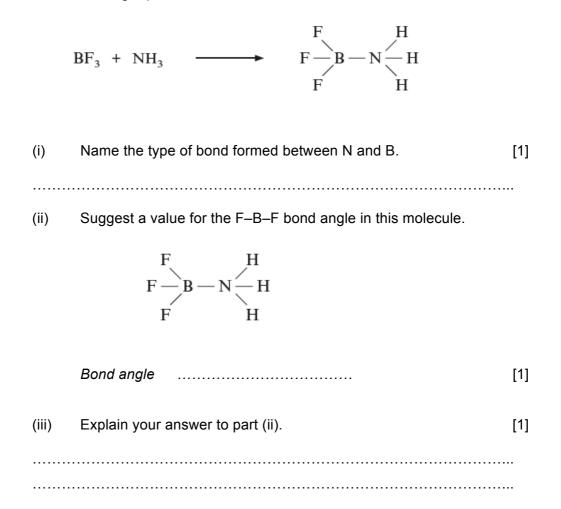

Use the mass of barium carbonate formed to calculate the mass of Na₂CO₃ in the original mixture and hence the percentage of Na₂CO₃ in the mixture.
 [3]

(C)	(i)	Explain which of the two methods described in parts (a) and (b) is likely to give the more accurate results.	[1]
	(ii)	Suggest possible improvements to the method which gave the lea accurate result.	ss [2]

- 9. (a) The melting temperature and electrical conductivity were measured for the following five substances.
 - sodium chloride diamond graphite iron iodine

The results of the experiment are shown in the table:

Substance	Melting temperature / °C	Conditions required for electrical conductivity
Α	3550	does not conduct in any state
В	801	conducts when molten
С	3642	conducts as a solid
D	1535	conducts as a solid
E	114	does not conduct in any state



(iii) Describe a **different** physical property which could be used to distinguish between iodine and sodium chloride. Include in your answer the reasons for the two solids behaving differently. [3]

(b) Use the VSEPR theory to deduce the shapes of BF3 and NH3.
 Explain the difference in the shapes of BF3 and NH3.
 [6 QER]

(c) Boron fluoride reacts with ammonia, NH₃, to make the compound shown in the following equation.

10. *(a)* Bromine is produced commercially from bromide ions in sea water by reaction with chlorine.

(i)	Give the equation for this reaction. [1]
(ii) 	Using oxidation states, show that chlorine is behaving as the oxidisir agent in this reaction. [2	_
(iii)	Air is then blown through the bromine-containing mixture to remove bromine as its vapour.	
	lodine can be produced in a similar way from the iodide ions present in sea water but it is more difficult to produce iodine vapour from its solution because iodine is less volatile than bromine.	
	Explain, in terms of bonding, why iodine is less volatile than bromine [2	-

- (b) On Earth, iodine occurs as only one stable isotope, ¹²⁷I.
 - (i) Using your understanding of the mass spectrum of chlorine, Cl₂, sketch and label the mass spectrum of a sample of iodine. [2]

Relative abundance			
		m/z	
	(ii)	A sample of iodine extracted from a meteorite was found to have a relative atomic mass of 128.7. State what this tells you about the composition of the iodine within the meteorite.	[1]
(c)		nd carries out some experiments with Group 2 metals.	
	(i)	In the first experiment, he adds a piece of calcium to cold water.	
		I. State what he would observe in this reaction.	[2]
		II. Write a balanced chemical equation for the reaction.	[1]
		III. The experiment is repeated with a piece of magnesium. State what he now observes.	[1]
			• • • • •

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 20

(ii) In the next experiment, Edmund reacts pieces of calcium with 19.4 cm^3 of 2.02 mol dm^{-3} hydrochloric acid.

 $Ca(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2(g)$

I. Calculate the minimum mass of calcium needed to react completely with the acid. [2]

Mass of calcium =g

II. Calculate the total volume of hydrogen evolved during this reaction when it is carried out at room temperature and pressure. [1]

[1 mol of any gas occupies a volume of 24.0 dm³ under these conditions]

 $Volume = \dots dm^3$

11. Ammonia, a very important industrial product, is produced by the Haber process.

Ammonia can be converted to ammonium sulfate, $(NH_4)_2SO_4$, a common fertiliser, by reacting it with sulfuric acid, H_2SO_4 .

	Nitrogen + Hydrogen	High pressure, 450°C	• Ammonia	Sulfuric Acid	Ammonium Sulfate			
(a) Explain v sulfate.	vhy ammonia behaves a	as a base in the	formation of	f ammonium [1]			
Tł	The Haber process can be represented by the following equation.							
	N ₂ (g) + 3H	$I_2(g) \implies 2NH_3(g)$	ΔÌ	$H^{\oplus} = -92 \mathrm{k}$	J mol ⁻¹			
(b) For the e	quilibrium reaction, expl	ain why					
	(i) a	high pressure is used,			[2]			
	(ii) a	mmonia is removed fron	n the equilibriun	n mixture as	it forms. [2]			
(C		nd explain the effect of i ings on the value of the						

Candidate Name	Centre Number				Candidate Number				er	
						0				

GCE AS/A LEVEL CHEMISTRY

AS UNIT 2

SPECIMEN PAPER

Energy, Rate and Chemistry of Carbon Compounds

1 hour 30 minutes

	For Ex	kaminer's us	e only
	Question	Maximum	Mark
	Question	Mark	Awarded
Section A	1. to 6.	10	
Section B	7.	14	
	8.	14	
	9.	12	
	10.	15	
	11.	15	
	Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a data sheet and a calculator.

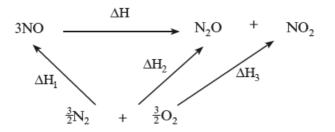
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES


The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 10.

SECTION A

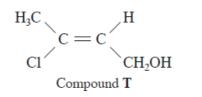
Answer all questions in the spaces provided.

1. The energy cycle for a decomposition of nitrogen(II) oxide is shown below.

(a) Complete the equation to show ΔH in terms of ΔH₁, ΔH₂ and ΔH₃. [1]
ΔH =
(b) Write the chemical equation for the standard molar enthalpy change of formation of gaseous nitrogen(II) oxide, NO. [1]
A compound of carbon, hydrogen and oxygen has a relative molecular mass of 180.
The percentage composition by mass is C 40.0 %; H 6.70 %; O 53.3 %.
(a) Calculate the empirical formula of this compound. [2]

Empirical formula

(b) Determine the molecular formula of this compound. [1]


Molecular formula

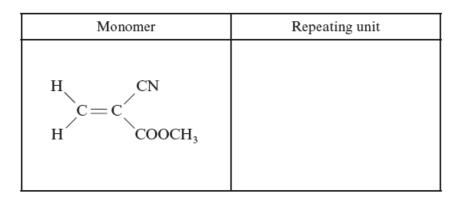
2.

[1]

10

3. (a) Explain why Compound **T** has *E*–*Z* isomers.

(b) Explain why the enthalpy change to convert the *E*-isomer of compound **T** to the *Z*-isomer of compound T is 0 kJ mol⁻¹
 [1]


4. Draw the **skeletal** formula of 4-chloro-2-methylpentane. [1]

5. Ethanol is present in many intoxicating drinks. Give **one** health problem associated with the consumption of excess ethanol. [1]

.....

6. 'Superglue' is a liquid containing methyl 2-cyanopropenoate. In the presence of moisture this alkene rapidly polymerises, in a similar way to ethene.

Complete the table showing the structure of the repeating unit. [1]

SECTION B

Answer **all** questions in the spaces provided.

7.	(a)	chloro	omethan	action of methane with chlorine gives a wide array of products including methane, dichloromethane, trichloromethane, tetrachloromethane and e. This reaction only occurs in the presence of ultraviolet light.					
		(i)		Give a balanced equation for the formation of trichloromethane from dichloromethane and chlorine. [1]					
		(ii)	Under similar conditions, pentane can be used to produce 1-chloropentane.						
			I.	Explain how decane, $C_{10}H_{22}$, could be produced as one of products of this reaction.	the [2]				
			II.	Warming 1-chloropentane with aqueous sodium hydroxide produces pentan-1-ol. Use the infrared absorption frequen given in the data sheet to explain how you could check spectroscopically that this reaction had converted all the 1-chloropentane into pentan-1-ol.					
		(iii)	Gas X	is another product of this reaction.					
				of gas X occupies 1 dm ³ at a temperature of 308 K and ure of 105000 Pa. Use this information to suggest its identity	y. [3]				

Gas X

(b) It is possible to test for the presence of halogen atoms in a halogenoalkane by hydrolysing the molecule and testing for the halide ions released, using silver nitrate solution. This is a nucleophilic substitution reaction with the nucleophile attacking the C^{δ^+} of the C-halogen bond. In each case, a precipitate is formed.

The carbon–halogen bond energies and the electronegativity differences for each bond are given below.

Bond	Average bond enthalpy /kJ mol ⁻¹	Electronegativity difference
C—Cl	338	0.61
C—Br	276	0.41
C—I	238	0.11

Using the information in the table, state how you would expect the rate of hydrolysis to vary as the halogenoalkane is changed. [2]

(c) The hydrolysis of three compounds was performed under identical conditions, and the time required for a precipitate of silver halide to form was measured.

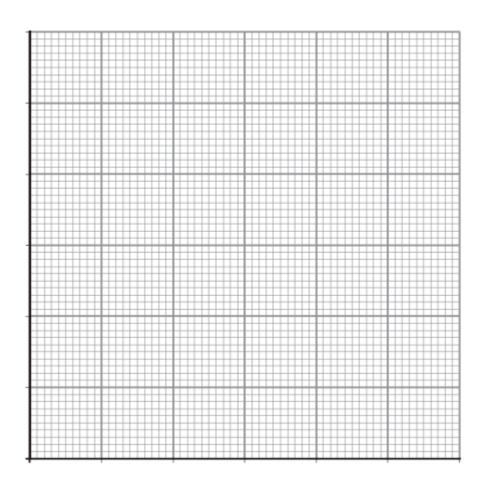
The results were as follows:

Compound	Time for precipitate to form / minutes
1-chloropentane	17
1-bromopentane	4
1-iodopentane	Less than 1

(i) Use the tables to explain which of the factors does affect the rate of reaction. [2]

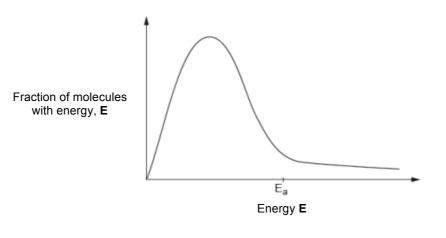
(ii)	Briefly describe how you could gain further evidence to supp conclusion in part (<i>b</i>).	ort the [2]

8. *(a)* Iodine is slowly produced, as a red-brown solution, by the reaction of aqueous peroxodisulfate ions, $S_2O_8^{2-}$, with a large excess of aqueous iodide ions,


 $S_2O_8^{2-}(aq) + 2\Gamma(aq) \longrightarrow 2SO_4^{2-}(aq) + I_2(aq)$ colourless colourless red-brown

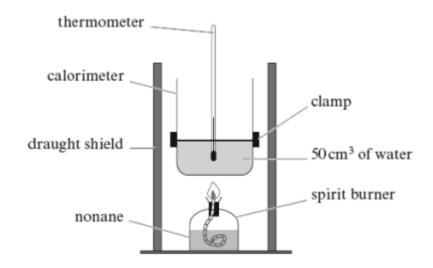
The following results were collected by a student.

Reaction time / min	0	1	2	3	4	5	6
Concentration of $I_2(aq)$ / mol dm ⁻³	0	0.0043	0.0070	0.0088	0.0097	0.0102	0.0102


(i) Plot these results on the grid below.Label the axes, select a suitable scale and draw the line of best fit.

[3]

(ii)	Describe the key features of the method that would have been us measure the rate of this reaction.	ed to [3]
(iii)	Explain, using particle theory, the effect of increasing temperature the rate of this reaction.	on [2]
(iv)	State the concentration of the peroxodisulfate ions at the start of t reaction, explaining your answer.	[2]
(v)	Use the graph to calculate the initial rate of the reaction, stating the units.	[2]


Initial rate = Units (b) Use the diagram below to explain the effect of adding a catalyst on the rate of a chemical reaction. [2]

······

1	4	

9. (a) Iwan used the apparatus below to find the enthalpy change of combustion of nonane $C_{9}H_{20}$.

(i) Iwan measured the mass of the spirit burner at the start and end of the experiment and found that 0.20 g of nonane had been burned.

Calculate the number of moles of nonane present in 0.20 g. [2]

Number of moles = mol

(ii) The initial temperature of the water was 22.5°C and the maximum temperature recorded during the experiment was 53.2°C. Calculate the enthalpy change of combustion of nonane, in kJ mol⁻¹. Show your working. [3]

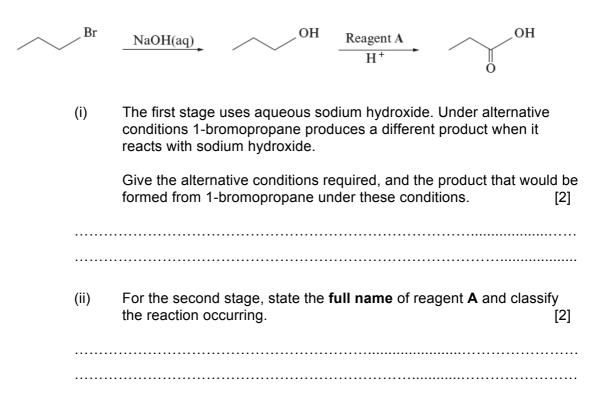
[c is the specific heat capacity of water which is 4.18 $J^{\circ}C^{-1}g^{-1}$]

 $\Delta_c H = \dots kJ \text{ mol}^{-1}$ (iii) Give the main reason why the experimental value that Iwan obtained differs from the literature value. Suggest any improvements to the experiment that would give a more accurate value. [2]

- (b) In the complete combustion of nonane, carbon dioxide and water are formed.
 - (i) Balance the equation below which represents the combustion of nonane. [1]

 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \hspace{0.1cm} + \hspace{0.1cm} \underline{\mathsf{O}}_2 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \underline{\mathsf{CO}}_2 \hspace{0.1cm} + \hspace{0.1cm} \underline{\mathsf{H}}_2\mathsf{O}$

(ii) The theoretical value for the enthalpy change of combustion of nonane (Δ_c H) is -4666 kJ mol⁻¹.


Use this value and the average bond enthalpy values in the table to calculate the average bond enthalpy of an O—H bond.

[3]

Bond	Average bond enthalpy / kJ mol ⁻¹
С—Н	412
С—С	348
O=0	496
C=O	743

Average bond enthalpy of an O—H bond = kJ mol⁻¹

(iii) Suggest why the value calculated above does not agree exactly with the literature value for an O—H bond in a water molecule. [1] 10. *(a)* 1-Bromopropane can be used to prepare propanoic acid in a two-stage process shown below.

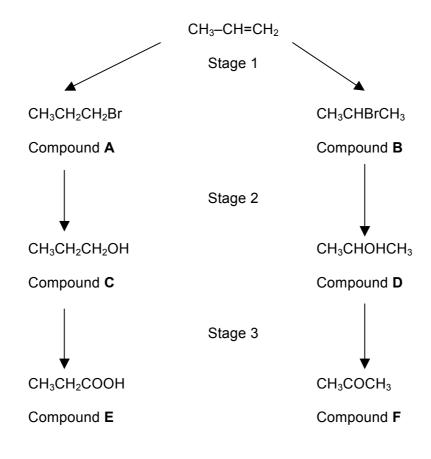
- (b) Compound **B** is an isomer of formula $C_6H_{12}O_2$ which exists as a sweetsmelling liquid at room temperature. It can be made from two of the organic compounds found in part (*a*).
 - Elemental analysis of compound B shows that it has a composition of 62.1 % carbon, 10.3 % hydrogen and 27.6 % oxygen, by mass.
 Show that this composition is consistent with the formula above. [2]

(ii) Compound **B** shows five resonances in its ¹H nuclear magnetic resonance (NMR) spectrum. Apart from containing two CH_3 – groups there are three $-CH_2$ – groups. The peaks on the NMR spectrum due to these $-CH_2$ – groups are found at 1.3 ppm, 2.1 ppm and 4.0 ppm.

The infrared spectrum of compound **B** shows absorptions at 2981 cm⁻¹ and 1750 cm⁻¹.

These are the only significant absorptions above 1500 cm⁻¹.

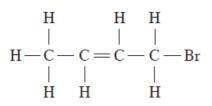
Using **all** the information supplied, deduce the structure of compound **B**. Give **reasons** in support of your answer. [6 QER]



(iii) State how this product, compound B, could be separated from the starting materials from part (a). Use your knowledge of intermolecular forces to explain why this method of separation would be suitable in this case.

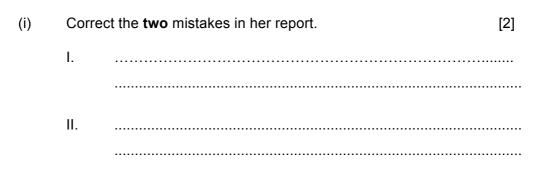
Ī	
	15

11. Alkenes can be the precursors to many organic compounds as shown below.


 (a) (i) Draw the mechanism for the production of the major product in stage 1. In your answer you should classify the type of mechanism occurring.
 [4]

	Type of mechanism
(ii)	Explain why two products are formed in stage 1 and why one of the products is favoured. [2]

(b) In stage 3 a third product was also formed which is not shown above. This compound also has three carbon atoms and its NMR spectrum includes a peak at chemical shift, δ = 9.8 ppm. An absorption occurs in its infrared spectrum at 1715 cm⁻¹.


Use the information above to deduce whether this compound is a result of the reaction of compound C or compound D. In your answer you should also include the type of reaction occurring in stage 3. [4]

(c) As part of a project, two students were asked to report on tests for functional groups present in the compound below.

Nia reported that in testing for the C=C group:

aqueous bromine should be added to the compound and if the test is positive, the colour of the mixture changes from purple to colourless;
the name of the compound formed in this test is 2,3,4-tribromobutane.

David reported that in testing for bromine:

- dilute hydrochloric acid should be added to the compound;
- aqueous silver nitrate should then be added;
- you should see a cream precipitate.
- (ii) I. State and explain the observations David would have made if he had carried out his test. [1]
 II. Outline the correct method for carrying out a test for bromine in the compound. Include any reagents used in your answer. [2]

Candidate Name	Centre Number			Candidate Number			er			
						0				

GCE A LEVEL CHEMISTRY

A2 UNIT 3

Physical and Inorganic Chemistry

SPECIMEN PAPER

1 hour 45 minutes

	For Ex	e only	
	Question	Maximum Mark	Mark Awarded
Section A	1. to 8.	10	
Section B	9.	17	
	10.	14	
	11.	8	
	12.	12	
	13.	19	
	Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a data sheet and a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 10.

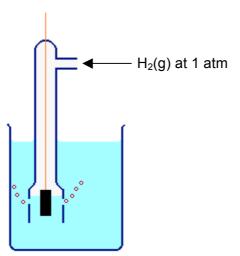
SECTION A

Answer **all** questions in the spaces provided.

1. Circle all the acids in the following equation.

$$CH_{3}COOH + NH_{3} \rightleftharpoons CH_{3}COO^{-} + NH_{4}^{+}$$
[1]

2. The table shows some enthalpy change values for three compounds.


	Standard enthalpy change of hydration / kJ mol ⁻¹	Standard enthalpy change of lattice breaking / kJ mol ⁻¹
lithium fluoride	-1005	1032
potassium fluoride	-792	776
rubidium fluoride	-819	813

State which compound(s) you would expect to be soluble in water.	[1]
(a) Balance the equation for the reaction of sodium hydroxide with chlorine.	[1]
Cl_2 + NaOH \rightarrow NaCl + NaClO ₃ + H ₂ O	
(b) Use oxidation states to show that this is a disproportionation reaction.	[1]

.....

3.

4. The standard electrode potential for a half-cell can be measured by connecting it to the standard hydrogen electrode shown below.

	Name the solution in the beaker and state its concentration.	[1]
5.	Put the following species in order of increasing entropy.	[1]
	$Br_2(I)$ $Kr(g)$ $Se(s)$	
	lowest highest	
6.	Acidified potassium dichromate may be used to oxidize iron(II) ions. The two relevant half equations are shown below.	
	$Cr_2O_7^{2-}$ + 14H ⁺ + 6e \rightleftharpoons 2Cr ³⁺ + 7H ₂ O	
	Fe^{3+} + $e \rightleftharpoons Fe^{2+}$	
	Write the overall ionic equation for this reaction.	[1]

.....

7. Carbon tetrachloride does not react with cold water, however silicon(IV) chloride reacts violently. Explain why the reactivity of these compounds is so different. [1]

.....

8. Chromyl chloride is a compound containing chromium, oxygen and chlorine only. It contains 33.5 % chromium and 45.8 % chlorine by mass.

Calculate the empirical formula of chromyl chloride. [2]

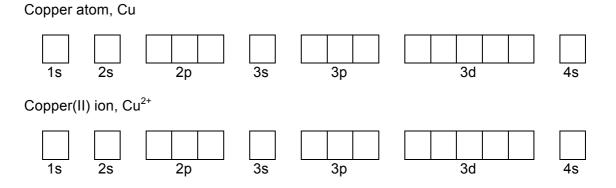
Empirical formula

SECTION B

Answer **all** questions in the spaces provided.

9.	(a)	(i) 		oron in boron chloride, BCl ₃ , is described as electron deficien what is meant by the term <i>electron deficient</i> .	nt. [1]
		(ii) 		BCl₃ is mixed with ammonia a new species is formed. Identif w species and explain how it forms.	fy [2]
	(b)		-	pecies formed in <i>(a)</i> (ii) can be used to produce films of ron nitride, BN.	
		(i)	Descr	orm of BN has many similarities to the structure of graphite. ibe the differences between the structures of hexagonal bor and graphite.	[2]
		(ii)	other.	ite is commonly used as a lubricant as the layers slip over each that a significant factor in this softness esence of absorbed molecules such as O_2 , H_2O and CO_2 .	
			an atn molec then h	sple of graphite was repeatedly exposed to a vacuum and the nosphere of pure $H_2O(g)$ to remove all traces of absorbed ules other than H_2O , leaving a sample of mass 3.645g. This vieated under vacuum until constant mass was reached, leaving s of 3.592g.	was
			l.	Explain why the sample was heated to constant mass.	[1]
			 II.	Calculate the ratio of carbon atoms to water molecules in th graphite.	ne [3]

(c) Phosphorus(III) chloride, PCI₃, can be produced in the equilibrium below:


 $PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(g)$

(i) A sample of PCI₅ is introduced into a sealed vessel with an initial pressure of 12.4×10^3 Pa, and the system is allowed to reach equilibrium where the partial pressure of Cl₂ is 6.0×10^3 Pa.

Calculate the value of K_p under these conditions, giving its units. [4]

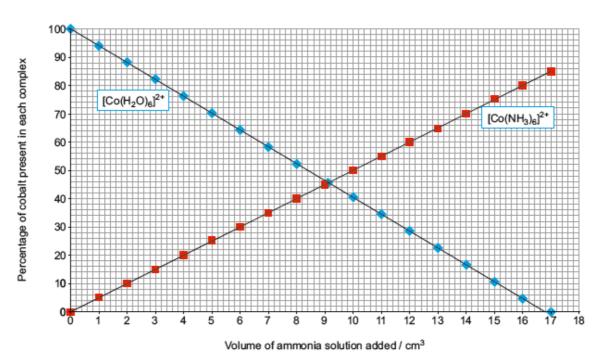
	K _p = Units	
(ii)	When the temperature is increased by 50 °C, the value of the equilibrium constant K_p doubles. State and explain whether this reaction is endothermic or exothermic.	[2]
(iii)	Explain why phosphorus can form PCI_5 and PCI_3 but nitrogen can only form one chloride.	[2]

- 10. Cobalt, nickel and copper are metals which lie adjacent to each other in the Periodic Table.
 - (a) Use arrows in boxes to show the electronic structures of the copper atom and the Cu²⁺ ion. [2]

(b) Cobalt (II) compounds are often pink in aqueous solution as they contain the $[Co(H_2O)_6]^{2^+}$ complex ion.

Addition of concentrated hydrochloric acid to a solution containing $[Co(H_2O)_6]^{2^+}$ causes a colour change as a new species is formed. Give the colour and formula of the species formed and explain the origin of the colour in the complex $[Co(H_2O)_6]^{2^+}$. [6QER]

(c) Addition of ammonia solution to a pink solution of $[Co(H_2O)_6]^{2+}$ forms a yellow-brown solution of $[Co(NH_3)_6]^{2+}$, due to the reversible reaction:


$$[Co(H_2O)_6]^{2+}$$
 + $6NH_3 \Rightarrow [Co(NH_3)_6]^{2+}$ + $6H_2O$

A student chose to study this change using colorimetry.

(i) The pink solution of $[Co(H_2O)_6]^{2+}$ absorbs light of wavelength 515 nm. Calculate the energy of the electron transition taking place, giving your answer in kJ mol⁻¹. [3]

h = 6.63×10^{-34} J s c = 3.00×10^8 m s⁻¹ N_A = 6.02×10^{23}

 $Energy = \dots kJ mol^{-1}$

Following the experiment the student decided that the reversible reaction shown did not fully reflect what was occurring during the experiment.

 $[Co(H_2O)_6]^{2+}$ + $6NH_3 \rightleftharpoons [Co(NH_3)_6]^{2+}$ + $6H_2O$

State whether you agree with her conclusion and explain your reasoning.

14

[3]

11. Some students are provided with five solutions labelled **A**–**E**.

.....

(a) Flame tests were undertaken on all the solutions and a range of colours were seen, including lilac for one solution and apple green for another.

State what information is provided by these observations. [1]

The five solutions contain only common cations and anions that the students have met during their A-level studies. No two solutions contain the same cations or the same anions. One of the solutions is known to be aqueous sodium hydroxide, while another contains nitrate ions.

The students mixed each pair of solutions and recorded the following observations.

			1	
	Solution A	Solution B	Solution C	Solution D
Solution E	pale blue precipitate	no visible change	white precipitate formed that dissolves when extra solution E is added	no visible change
Solution D	thick white precipitate	no visible change	white precipitate	
Solution C	white precipitate	bright yellow precipitate		
Solution B	brown solution with a white solid formed			

(b) Use all the information given to find the identities of solutions A–E.
 Explain your reasoning for identification of the metal ion present in solution C.

[7]

••••••	 	

Solution A	
Solution B	
Solution C	
Solution D	
Solution E	

- 12. A 25.00 cm³ sample of sodium hydroxide solution was exactly neutralised by 24.25 cm³ of sulfuric acid of concentration 0.176 mol dm⁻³.
 - (a) Calculate the concentration of the sodium hydroxide solution, giving your answer to the appropriate number of significant figures. [3]

Concentration of sodium hydroxide = mol dm⁻³

(b) An alternative method to calculate the concentration of the sodium hydroxide solution is to use its pH.

A student measures the pH of the same sodium hydroxide solution as being 13.5. Calculate the concentration of this sodium hydroxide solution. Show your working. [3]

$$[K_{\rm w} = 1.00 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}]$$

Concentration of sodium hydroxide = mol dm⁻³

(c) The two values calculated in (a) and (b) are consistent with each other.State and explain which method gives the more precise value. [1]

- (d) The titration was repeated using 25.00 cm³ of the weak acid ethanoic acid with a concentration equal to that of the sodium hydroxide.
 - (i) Choose an appropriate indicator for this titration from the list below, giving a reason for your answer. [1]

Indicator	pH range
methyl red	4.2 - 6.3
methyl yellow	2.9 - 4.0
phenolphthalein	8.2 - 10.0

.....

(ii) Give the expected pH of the solution when 12.50 cm^3 of sodium hydroxide had been added to 25.00 cm^3 of ethanoic acid. [2]

[K_a for ethanoic acid = 1.8×10^{-5} mol dm⁻³]

pH =

 (e) The reaction of aqueous sulfuric acid with the weak base ammonia produces ammonium sulfate solution. State and explain the pH you would expect for a solution of ammonium sulfate.
 [2]

.....

- 13. When a new substance is identified as having beneficial effects, chemists need to devise an appropriate route to synthesise the desired substance. They need to consider many factors, including the feasibility and rate of different routes.
 - (a) There are different ways to identify the feasibility of a chemical reaction. Two methods are the use of electrochemical data and the calculation of Gibbs' free energy.
 - (i) Use the data below to identify whether the reaction given is feasible at 298 K. Show your working in each case. [6]

 $2KMnO_4 + 5H_2O_2 + 6HCI \rightarrow 2MnCl_2 + 8H_2O + 5O_2 + 2KCI \qquad \Delta S^{\theta} = 9 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$

Substance	Standard enthalpy change of formation, $\Delta_{\rm f} {\rm H}^{\rm heta}$ / kJ mol ⁻¹
KMnO₄(s)	-813
H ₂ O ₂ (I)	-188
HCI(g)	-92
MnCl ₂ (s)	-482
H ₂ O(I)	-286
O ₂ (g)	0
KCl(s)	-436

Standard enthalpy changes of formation

Standard electrode potentials

Half-equation	$E^{ heta}$ / V
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(I)$	+1.52
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68

(ii)	In a laboratory the reaction is attempted by mixing a solution of acidified potassium manganate(VII) of concentration 0.5 mol dm ⁻³ and hydrogen peroxide solution of the same concentration at 350 K.
	State and explain which of the approaches in part (i) is most suitable for working out whether the reaction is feasible in this case and suggest how the experiment could be changed to ensure the feasibility calculation is valid. [3]

- (b) Reactions that are feasible are not always economically useful as the product may be formed too slowly. This can be helped by using a catalyst to increase the rate of the reaction.
 - (i) The table below gives data on the initial rates of reaction for an acidcatalysed bromination of propanone.

[Br ₂] / mol dm ⁻³	[CH ₃ COCH ₃] / mol dm ⁻³	рН	Initial rate of reaction / mol dm ⁻³ min ⁻¹
0.10	0.80	0	1.36 × 10 ^{−3}
0.10	0.80	1	1.36 × 10 ⁻⁴
0.10	0.40	1	6.80×10^{-5}
0.10	0.80	2	1.36 × 10 ⁻⁵
0.20	0.40	2	6.80 × 10 ⁻⁶

 $Br_2(aq) + CH_3COCH_3(aq) \rightarrow HBr(aq) + CH_3COCH_2Br(aq)$

Ι.	Show that the reaction is first order with respect to [H ⁺ (aq)]. [2]

II. Deduce a rate equation for this catalysed reaction, giving the value and units of the rate constant. [4]

<i>k</i> =	••
Units	

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 56

	III.	A suggested mechanism for the process is given below.
		$CH_{3}COCH_{3} \ \ + \ \ Br_{2} \ \ \rightarrow \ \ \left[CH_{3}COBrCH_{3}\right]^{+} \ \ + \ \ Br^{-}$
		$\left[\text{CH}_3\text{COBrCH}_3\right]^{\scriptscriptstyle +} \ \rightarrow \ \left[\text{CH}_3\text{COCH}_2\right]^{\scriptscriptstyle +} \ + \ \text{HBr}$
		$\left[\text{CH}_3\text{COCH}_2\right]^{\scriptscriptstyle +} \ \text{H}\text{r}^{\scriptscriptstyle -} \ \rightarrow \ \text{CH}_3\text{COCH}_2\text{Br}$
		State and explain whether this proposed mechanism is correct. [2]
(ii)		n why the use of homogeneous catalysts can be an nmental advantage but a problem in the isolation of the final ct. [2]

Candidate Name	Centre Number				Candidate Number				er	
						0				

GCE A LEVEL CHEMISTRY

A2 UNIT 4

Organic Chemistry and Analysis

SPECIMEN PAPER

1 hour 45 minutes

	For Examiner's use only							
	Question	Maximum Mark	Mark Awarded					
Section A	1. to 9.	10						
Section B	10.	15						
	11.	15						
	12.	13						
	13.	13						
	14.	14						
	Total	80						

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a data sheet and a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 14.

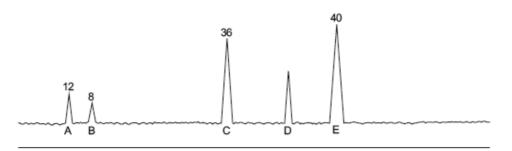
SECTION A

Answer **all** questions in the spaces provided.

1. Give the structural formula of a compound that will give a diazonium compound when treated with cold nitric(III) acid. [1]

2. Write the displayed formula of the organic compound obtained when phenylamine reacts with ethanoyl chloride. [1]

3. The melting temperature of a pure compound is 113 °C.

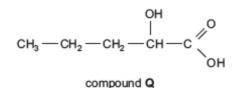

State the effect on the melting temperature of adding a small quantity of another compound to a sample of the pure material. [1]

.....

4. The gas chromatogram of a mixture of hydrocarbons is shown below. The peak areas represent the relative amount of each compound present. Compound **D** makes up 20 % of the mixture.

Calculate the relative peak area of compound **D**.

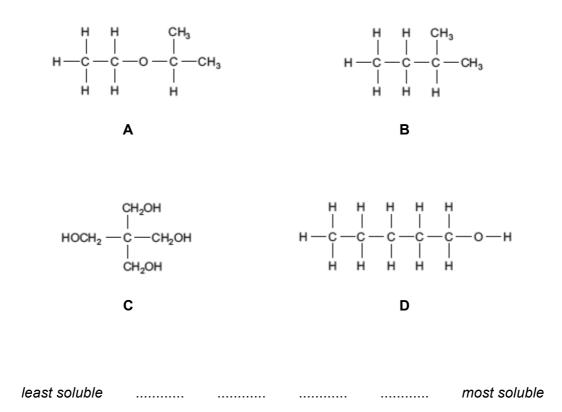
[1]

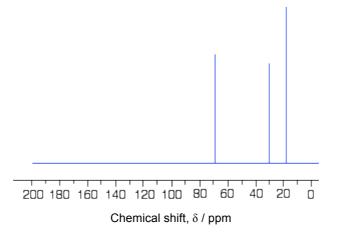


Relative peak area =

5. The nitrile that has the formula C_6H_5CN is reduced by lithium tetrahydridoaluminate(III). State the systematic name of the organic **product**. [1]

.....


6. Compound **P** reacts with hydrogen cyanide and the product is then hydrolysed to give compound **Q**.


State the type of reaction mechanism occurring when compound P reacts (a) with hydrogen cyanide. [1] State the name of compound P. (b) [1] Methylbenzene undergoes the reactions below. CH₃ reflux with heat with intermediate compound W compound alkaline KMnO₄ soda lime State the molecular formula of compound **W**. [1]

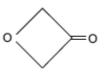
7.

8. Arrange the compounds shown below in order of **increasing** solubility in water. [1]

9. State the **systematic name** of the alcohol of formula C₄H₁₀O that has the ¹³C NMR spectrum shown below. [1]

.....

SECTION B


Answer all questions in the spaces provided.

10. (a) Propene is obtained by the cracking of a larger molecule hydrocarbon. In a particular cracking process two thirds of the product was propene and the rest was propane. Give the formula of a hydrocarbon that could be cracked in this way. [1] Propenoic acid is produced from propene by oxidation. (b) H₂C-C-C $1\frac{1}{2}O_{2}$ CH₃CH = CH₂ H₂O This reaction uses a heterogeneous catalyst at a temperature of about 600 K. State and explain whether the use of this catalyst will affect the enthalpy change for this reaction. [2] (C) Compound **F** is produced by the reaction of propenoic acid and hydrogen bromide. This product does not exist as enantiomers. Suggest a displayed formula for compound **F**, giving a reason for your choice.

[2]

.....

(d) Both propenoic acid and 3-oxetanone are isomers of formula $C_3H_4O_2$.

3-oxetanone

These two compounds have different infrared absorption spectra.

Use the Data Sheet to state the differences in the bonds present, stating their absorption values. [2]

.....

(e) Propenoic acid is neutralised by sodium hydroxide to produce sodium propenoate.

Calculate the mass of sodium propenoate that will be formed from 38.3 kg of propenoic acid, assuming that complete neutralisation occurs. [2]

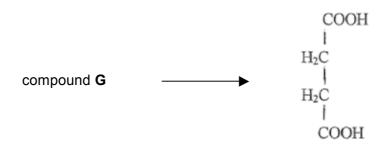
Mass of sodium propenaoate = kg

(f) Sodium propenoate can be polymerised to give 'sodium polyacrylate'.

Give the repeating unit of this addition polymer. [1]

(g) A solid polymer is made by polymerising a mixture of propenoic acid and sodium propenoate. This product is sold as a superabsorbent polymer that will absorb 300 times its volume of water without a significant increase in volume. The water is held in the polymer structure by hydrogen bonding.

Draw a diagram to show how water molecules can hydrogen bond to propenoic acid molecules. In your answer you should use at least two molecules of each reactant, showing necessary dipoles and relevant lone pairs of electrons. [2]


 (h) Propenenitrile, H₂C=CH–C=N, is used as the starting material to make 'acrylic' fibres. It is made from propene, ammonia and oxygen from air, in the presence of a suitable catalyst.

$H_2C = CH - C$	CH ₃ -	- NH	, +	1 ¹ / ₂ O ₂		-	$H_2C = CH - C = N$	+	3 H ₂ O
					s been dev catalyst.	velopec	l using propane as th	e	
H ₃ C — CH ₂ — 0	СН₃ -	⊦ NH	3 +	2 O ₂		-	H₂C=CH−C=N	+	4 H ₂ O
consi	dering	adoptio	on of tl		fied metho		ken into account whe g propane. Each of yo		

11. (a) There is an increasing interest in biochemical routes to compounds that were previously produced from fossil fuels. One of these compounds is butane-1,4-dicarboxylic acid.

HOOC-CH2-CH2-COOH

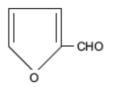
One route involves the oxidation of compound **G**.

(i) Suggest a formula for compound **G** giving a suitable oxidising agent for the reaction. [2]

Oxidising agent

(ii) such as can be One biochemical route being developed starts from sugars glucose. This process also uses carbon dioxide and represented by the following equation.

 $7C_6H_{12}O_6 + 6CO_2 \rightarrow 12(CH_2)_2(COOH)_2 + 6H_2O$


- *M*_r 180 *M*_r 118
- I. Calculate the yield (in kilograms) of butane-1,4-dicarboxylic acid that would be obtained if 1.00 kg of glucose was completely converted to the acid. [3]

 Yield =kg

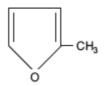
 II.
 Use the chemical equation to help you suggest why this reaction can be considered to be a green process.

 A reference to the exclusion of fossil fuels in this process is not required.

(b) Furfural is an aldehyde that is produced from agricultural by-products. One method is the hydrolysis of certain polysaccharides to give the sugar xylose, which is then itself hydrolysed to give furfural.

furfural

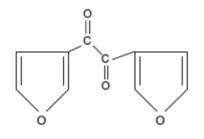
In a large scale laboratory experiment 750 g of corn cobs were refluxed with 2.5 dm³ of aqueous sulfuric acid of concentration 1.2 mol dm⁻³. After neutralisation of the acid, 100 g of furfural was obtained.

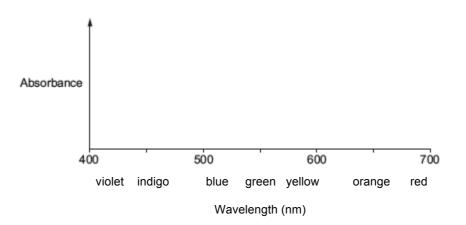

(i) Calculate the volume of sulfuric acid needed to make 2.5 dm³ of the aqueous solution. [2]

[density of sulfuric acid = 1.84 g cm^{-3}]

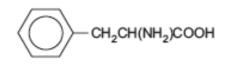
Volume of sulfuric acid = \dots cm³

(ii) Suggest **two** ways in which this method might be modified so that a higher percentage yield of furfural could be obtained. [2]


(iii) The boiling temperature of furfural is 162 °C.
 Comment on why the boiling temperature of 2-methylfuran may be different from this value, explaining your answer. [3]



(iv) Under certain conditions furfural can be converted into the yellow compound, furil.



furil

Use the diagram below to draw a line that shows the visible absorption spectrum for furil. [2]

12. *(a)* The artificial sweetener aspartame is a dipeptide. One of its hydrolysis products is phenylalanine.

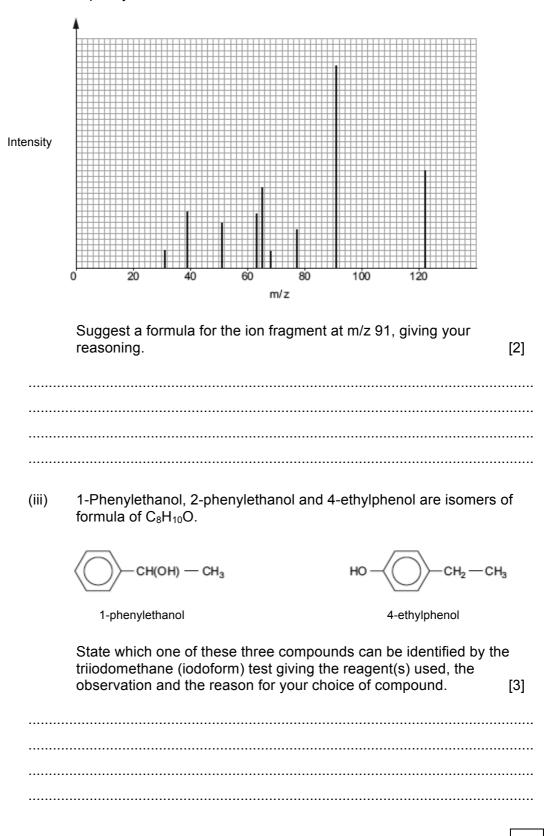
phenylalanine

- (i) Give the formula of the dipeptide formed from phenylalanine. [1]
- (ii) The formula of an α -amino acid can be written in an ionic form.

Write the formula of the ionic form of phenylalanine present in a strongly acidic solution. [1]

(b) Data about three derivatives of propanoic acid are given in the table.

Name	Formula	Melting temperature / °C
3-phenylpropanoic acid	$C_6H_5CH_2CH_2COOH$	< 20
3-phenyllactic acid	C ₆ H₅CH₂CH(OH)COOH	122
phenylalanine	C ₆ H ₅ CH ₂ CH(NH ₂)COOH	270

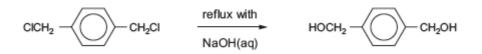

Discuss the relative melting temperatures of the acids in terms of the intermolecular bonding between the molecules.

[4]

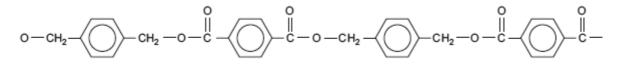
(c) The isolation of flavours and fragrances from plants has been practised for many years. However, this extraction is often expensive and produces only small quantities. There is therefore an increasing interest in biochemical routes that do not rely on oil based products. In a recent study phenylalanine has been converted to the important perfumery chemical, 2-phenylethanol, via a route using enzymes. This is summarised below.

соон COOF phenylalanine phenylpyruvic acid 2- phenylethanol phenylethanal (i) Describe a test that will distinguish between phenylpyruvic acid and phenylethanal, stating the reagent(s) used and the observation with each compound. [2] Reagent(s) Observation with each compound

 (ii) In this study 2-phenylethanol was separated by gas chromatography and identified by mass spectroscopy. The mass spectrum of 2-phenylethanol is shown below.

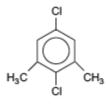


13. (a) 1,4-Di(chloromethyl)benzene can be used as a starting material for the production of polyesters.



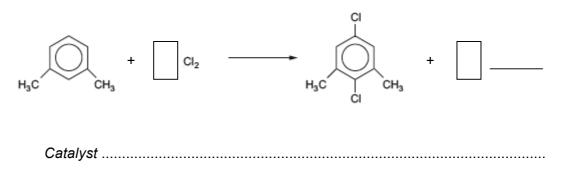
1,4-di(chloromethyl)benzene

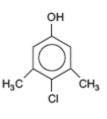
It is converted into 1,4-di(hydroxymethyl)benzene via a reaction with aqueous sodium hydroxide.


1,4-Di(hydroxymethyl)benzene can then be used to produce the polyester drawn below.

State the name of the other compound that is used to make this polyester. [1]

.....


(b) Explain why refluxing 2,5-dichloro-1,3-dimethylbenzene, shown below, with aqueous sodium hydroxide does not result in the replacement of the chlorine atoms by hydroxide groups. [2]


.....

(c) 2,5-Dichloro-1,3-dimethylbenzene can be formed from 1,3-dimethylbenzene by a Friedel-Crafts reaction.

State a catalyst for this reaction and complete the equation below. [2]

(d) The active compound in $Dettol^{(6)}$ is PCMX.

PCMX

(i) State what will be seen when PCMX reacts with iron(III) chloride solution. [1]
 (ii) Aqueous bromine was added to PCMX resulting in the colour of the bromine disappearing. Suggest what else would be seen during this reaction and draw the formula of a possible organic product. [2]

.....

(iii) There are 12.0 g of PCMX in a bottle containing 250 cm³ of Dettol[®].
 Calculate the concentration of PCMX in mol dm⁻³. [2]

Concentration = mol dm⁻³

 (iv) Describe and explain the low resolution ¹H NMR spectrum of PCMX. No reference to the relative position of the peaks in the spectrum is required. [3]

13

14. (a) In a project some students were asked to prepare 1-butyl ethanoate from butan-1-ol and ethanoic acid. One method found in the literature is given below.

'Mix together 18.0 cm³ / 14.6 g of butan-1-ol with 8.5 cm³ / 8.9 g of ethanoic acid in a pear-shaped flask. Reflux the mixture for 20 minutes. Remove the condenser and distil the mixture, collecting the mixture that boils at 115–130 °C. After purification, the yield of 1-butyl ethanoate is about 25 g'.

Some necessary data is given in the table.

Name	Mr	Boiling temperature / °C
butan-1-ol	74	117
ethanoic acid	60	118
1-butyl ethanoate	116	126

(i) Give the equation for the reaction. [1]

.....

(ii) The students thought that the theoretical yield of 1-butyl ethanoate was less than the actual yield stated in the method.

Calculate the theoretical yield in grams that should be formed. [3]

Yield = g

(iii) The students ran a chromatogram of their distillate. They found besides 1-butyl ethanoate, some butan-1-ol and ethanoic acid were present together with a little water.

A student suggested that some solid sodium hydrogencarbonate was added to the distillate.

Describe what would be seen when this substance was added and state why this observation occurred. [2]

.....

(iv) After further purification the 1-butyl ethanoate was checked for traces of butan-1-ol.

State an instrumental method, other than chromatography, that could be used for this purpose and explain how any traces of butan-1-ol would be indicated. [2]

- (b) An ant pheromone has been isolated and studied. Some details of the compound are given below.
 - 1. The % of oxygen by mass is 16.3
 - 2. It can be reduced to a primary alcohol
 - 3. It will decolourise aqueous bromine
 - 4. The ¹H NMR spectrum suggests six different proton environments.
 - 5. The ¹³C NMR spectrum suggests six different carbon environments.

Gareth suggested that the pheromone was cyclohexanone.

Study the information provided and discuss, giving reasons, whether each statement fits the suggested compound. [6 QER]

GCE A LEVEL CHEMISTRY

A2 UNIT 5

Practical Examination

Experimental Task TESTS 1 and 2

INSTRUCTIONS TO TEACHERS / EXAMS OFFICERS

SPECIMEN PAPER

Confidential

To be opened on receipt for immediate use by TEACHERS / EXAMS OFFICERS

This document should be stored securely by the exams officer when not in use by the teacher. Its contents should not be divulged except to those concerned with the preparation of the assessment.

A. General Instructions

1. The Experimental Task will be completed in one session of up to 3 hours. Two versions of the test will be set for use on the following dates:

Test 1	(date)
Test 2	(date)

Each candidate may undertake only one of these tests. Where all the candidates can be accommodated in a single session, centres are advised to use Test 1 during the morning session on day 1. Where centres require more than one session, they may choose to use an additional session on day 1 and/or day 2. Where a second session is used on a single day, centres must ensure that learners in the later session have no opportunity to communicate with those who have already taken the test.

- 2. The test must be supervised at all times by a member of staff responsible for teaching A level Chemistry. Centres may use multiple laboratories, provided that a subject teacher is available to supervise all groups at all times.
- **3.** Teachers must ensure that all candidates have adequate working space and that they are set a reasonable distance apart. Each candidate must have a complete set of glassware and ready access to weighing and heating apparatus.
- 4. Centres will receive sufficient copies of the candidate booklets for Tests 1 and 2.
- 5. Teachers may open the "Setting up Instructions" document one week before Test 1 (i.e. date). This is for the purpose of preparing the necessary solutions and apparatus. The candidate booklets must not be opened until the day of the test.
- **6.** Candidates should write their answers in the spaces provided in the candidate booklet. Should there be a need for additional space a standard extension/answer booklet should be provided.
- 7. Marks will be awarded by teachers for up to three aspects directly observed whilst candidates carry out practical work. These marks must be entered in each candidate's booklet. Guidance on the awarding of these marks will be provided in the "Setting up Instructions" document.
- 8. Completed candidate booklets must be securely stored by the exams officer until examiner details are received in late April. They should be posted to the allocated examiner as soon as possible and no later than (date). Teachers must not be given access to the completed booklets after they have been handed to the exams officer.
- **9.** Examiners will require teachers' results for the experiments carried out. These must be recorded clearly on the appropriate form and given to the exams officer with candidates' work. When different groups of candidates have been given different solutions separate teacher results forms must be completed and steps taken to clearly identify which candidates' work should be marked against which teacher results. This information must be provided to examiners along with candidates' work.
- **10.** The experimental task will be externally marked by a WJEC examiner. The name and address of the examiner will be issued to centres by the end of April.
- **11.** WJEC monitors will visit a random sample of centres to ensure the experimental task is being administered correctly. Visiting monitors will require access to candidates' "lab books".

Β. **Specific Instructions**

Details of the apparatus and chemicals required for the tests follow.

WJEC should be informed immediately of any difficulty in providing the required apparatus or chemicals.

Contacts:

Subject Officer	Jonathan Owen jonathan.owen@wj	029 2026 5057 jec.co.uk
Subject Support Officer	Matthew Roberts matthew.roberts@	029 2026 5380 wjec.co.uk

Apparatus and chemicals required

Test 1

Apparatus

Each candidate will need safety goggles and the following apparatus:

- 1 x weighing bottle + lid containing approximately 1.5 g of aspirin tablets (pre-weighed)
- 1 x 50 cm³ burette
- $2 \times 25 \text{ cm}^3$ pipettes $2 \times 250 \text{ cm}^3$ standard flasks
- 2 x 250 cm³ conical flasks
- 1 x 25 cm³ measuring cylinder
- 1 x filter funnel
- 1 x spatula
- 1 x stirring rod
- 1 x wash bottle

Ready access to a 3 decimal place weighing balance and heating apparatus (electric hotplate/Bunsen burner)

Chemicals

Each candidate will need:

```
4 x aspirin tablets 300 mg
150 cm<sup>3</sup> sodium hydroxide solution (approx 1 mol dm<sup>-3</sup>)
300 \text{ cm}^3 standard sulfuric acid (0.05 mol dm<sup>-3</sup>)
phenolphthalein
de-ionised water
```

Test 2

The task is the same as that in Test 1 but candidates here use a different brand of aspirin tablets with a different amount of 2-ethanoyloxybenzenecarboxylic acid e.g. 250 mg.

GCE A LEVEL CHEMISTRY

A2 UNIT 5

Practical Examination

Experimental Task TESTS 1 and 2

SETTING UP INSTRUCTIONS

SPECIMEN PAPER

Confidential

To be opened on (date) by TEACHERS / TECHNICIANS

This document should be stored securely by the exams officer when not in use by the teacher. Its contents should not be divulged except to those concerned with the preparation of the assessment.

Apparatus and chemicals required

Test 1

Apparatus

Each candidate will need safety goggles and the following apparatus:

1 x weighing bottle + lid containing approximately 1.5 g of aspirin tablets (pre-weighed)
1 x 50 cm³ burette
2 x 25 cm³ pipettes
2 x 250 cm³ standard flasks
2 x 250 cm³ conical flasks
1 x 25 cm³ measuring cylinder
1 x filter funnel
1 x spatula
1 x stirring rod
1 x wash bottle

Ready access to a 3 decimal place weighing balance and heating apparatus (electric hotplate/Bunsen burner)

Chemicals

Each candidate will need:

150 cm³ sodium hydroxide solution (approx 1 mol dm⁻³) 300 cm³ standard sulfuric acid (0.05 mol dm⁻³) phenolphthalein de-ionised water

Procedure

- 1. Transfer your aspirin tablets to a 250 cm³ conical flask and add **exactly** 25.0 cm³ of sodium hydroxide solution (approximately 1 mol dm⁻³) and about the same volume of de-ionized water. Simmer gently for about 10 minutes to hydrolyse the aspirin.
- 2. Weigh the empty weighing bottle and lid.
- 3. Leave the reaction mixture to cool and carefully transfer to a 250 cm³ standard flask. Rinse the conical flask several times transferring all washings to the standard flask. Make the solution up to 250 cm³.
- 4. Titrate 25.0 cm³ samples of the diluted reaction mixture with standard sulfuric acid (0.05 mol dm⁻³) using 3 drops of phenolphthalein indicator (Titration B).
- 5. Standardise the sodium hydroxide solution (approximately 1 mol dm⁻³) after suitable exact dilution in a standard flask, using the standard sulfuric acid and phenolphthalein indicator (Titration A). This step can be carried out at any convenient time.

Test 2

The task is the same as that in Test 1 but candidates here use a different brand of aspirin tablets with a different amount of 2-ethanoyloxybenzenecarboxylic acid e.g. 250 mg.

Technicians

Tablets should be placed in weighing bottles and lids closed. The total mass (to min 3 dp) should be marked on each bottle.

NaOH solution should be labelled 'NaOH approx 1 mol dm⁻³'

H₂SO₄ should be standardised and labelled with precise concentration

You should prepare between 50 and 100 % more of each solution than should be required according to the volumes needed by each candidate.

PLEASE NOTE

Marks will be awarded for the proximity of candidate results to those of the teacher. When more than one batch of solutions is prepared it is vital that teacher results are obtained for each batch.

Teacher-awarded marks

A mark of 0 or 1 must be awarded by the teacher for three aspects relating to the practical work carried out by each candidate. These should be recorded as work proceeds and added to candidates' booklets at the end of the session.

Working safely – 1 mark to be awarded unless intervention is required to ensure safety

Efficient use of time – 1 mark to be awarded for carrying out standardisation at a convenient time e.g. whilst hydrolysis is taking place

Dilution – 1 mark to be awarded for ten-fold dilution of sodium hydroxide for standardisation, 25 cm^3 transferred to a 250 cm³ standard flask using a pipette

GCE A LEVEL CHEMISTRY

A2 UNIT 5

Practical Examination

Experimental Task

Teacher-awarded marks

Record sheet – to be completed by teachers during the Experimental Task

Candidate Name	Working safely	Efficient use of time	Dilution

A mark of 0 or 1 should be awarded for each of the three aspects included. These should be recorded in the candidates' booklets at the end of the session.

Surname		Centre Number	Candidate Number
Other Names			
WJEC CBAC	GCE A LEVEL CHEMISTRY A2 UNIT 5		

Practical Examination

Experimental Task

TEST 1

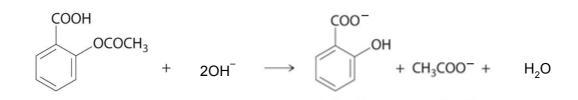
SPECIMEN PAPER

3 hours

For Examiner's use only			
Maximum Mark			
	Mark	Awarded	
Total	30		

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Pencil may be used to draw tables and graphs. Write your name, centre number and candidate number in the spaces at the top of this page. Write your answers in the spaces provided in this booklet.


INFORMATION FOR CANDIDATES

The total number of marks available for this task is 30. The number of marks is given in brackets at the end of each question or part question. You are reminded of the necessity for orderly presentation in your answers.

Analysis of aspirin tablets

The active ingredient in aspirin is 2-ethanoyloxybenzenecarboxylic acid (acetyl salicylic acid). The object of this task is to determine the percentage of this compound in aspirin tablets.

The first part of the experiment involves the alkaline hydrolysis of 2-ethanoyloxybenzenecarboxylic acid with excess sodium hydroxide.

The amount of excess sodium hydroxide is then determined by titration with standard sulfuric acid (0.05 mol dm^{-3}) using phenolphthalein as indicator.

Apparatus

You will need safety goggles and the following apparatus:

1 x weighing bottle + lid containing approximately 1.5 g of aspirin tablets (pre-weighed)
1 x 50 cm³ burette
2 x 25 cm³ pipettes
2 x 250 cm³ standard flasks
2 x 250 cm³ conical flasks
1 x 25 cm³ measuring cylinder
1 x filter funnel
1 x spatula
1 x stirring rod
1 x wash bottle

You will also need access to a 3 decimal place weighing balance and an some heating apparatus

Chemicals

150 cm³ sodium hydroxide solution (approx 1 mol dm⁻³) 300 cm³ standard sulfuric acid (0.05 mol dm⁻³) phenolphthalein de-ionised water

Procedure

- 1. Transfer your aspirin tablets to a 250 cm³ conical flask and add **exactly** 25.0 cm³ of sodium hydroxide solution (approximately 1 mol dm⁻³) and about the same volume of de-ionised water. Simmer gently for about 10 minutes to hydrolyse the aspirin.
- 2. Weigh the empty weighing bottle and lid.
- 3. Leave the reaction mixture to cool and carefully transfer to a 250 cm³ standard flask. Rinse the conical flask several times transferring all washings to the standard flask. Make the solution up to 250 cm³.
- 4. Titrate 25.0 cm³ samples of the diluted reaction mixture with standard sulfuric acid (0.05 mol dm⁻³) using 3 drops of phenolphthalein indicator (Titration B).
- 5. Standardise the sodium hydroxide solution (approximately 1 mol dm⁻³) after suitable exact dilution in a standard flask, using the standard sulfuric acid and phenolphthalein indicator (Titration A). This step can be carried out at any convenient time.

A mark is awarded for suitable dilution of the sodium hydroxide solution. You may ask your supervisor for guidance with this but the mark will not then be awarded.

Teacher marks – 0 or 1 mark awarded for each aspect

Working safely

Efficient use of time

Dilution

[3]

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 86

Results

Record your results below drawing suitable tables to record both sets of titration data.

Mass of weighing bottle + lid + aspirin tablets	=	g	
Mass of weighing bottle + lid	=	g	
Mass of aspirin tablets	=	g	[1]

Titration A Standardisation of sodium hydroxide solution

Titration B Aspirin/sodium hydroxide mixture against sulfuric acid

For titration A, select the appropriate values for calculation of the mean titre. Indicate clearly which values these are, calculate the mean titre and record it in the table below.

Repeat these steps for titration B.

[3]

Examiner only		
Teacher value	Mark	
cm ³		
cm ³		

Mean titre A	cm ³
Mean titre B	cm ³

[10]

Analysis of results

- 1. Calculate the exact concentration of the sodium hydroxide solution from the results of titration A.
- 2. Determine the number of moles in 25.0 cm^3 of the sodium hydroxide solution.
- 3. Determine the number of moles of sodium hydroxide which were in excess and hence the number of moles which reacted with the aspirin.
- 4. Determine the number of moles and hence the mass of 2-ethanoyloxybenzenecarboxylic acid present in the aspirin tablets weighed out.
- 5. Determine the percentage of 2-ethanoyloxybenzenecarboxylic acid in the aspirin.

Analysis of aspirin tablets

Teacher Results Sheet

Centre Name _____ Centre Number _____

The following teacher results apply for candidates in Group ______.

Titration A Standardising sodium hydroxide

Mean volume of NaOH needed for 25.0 cm³ of H₂SO₄

= _____ cm³

Titration B Aspirin/sodium hydroxide mixture against sulfuric acid

Mean volume of H₂SO₄ needed for 25.0 cm³ of diluted reaction mixture (aspirin/NaOH)

= _____ cm³

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 90

Surname	Centre Number	Candidate Number
Other Names		

GCE A LEVEL CHEMISTRY

A2 UNIT 5

Practical Examination

Practical Methods and Analysis Task

SPECIMEN PAPER

1 hour

For Ex	kaminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	7	
2.	6	
3.	6	
4.	11	
Total	30	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Pencil may be used to draw tables and graphs. Write your name, centre number and candidate number in the spaces at the top of this page. Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this task is 30. The number of marks is given in brackets at the end of each question or part question. You are reminded of the necessity for orderly presentation in your answers. Answer all questions in the spaces provided.

1. (a) Draw a labelled diagram of a simple apparatus that could be used in an experiment to determine the enthalpy change for the reaction between sodium hydroxide and benzoic acid.

$$C_6H_5COOH + NaOH \rightarrow C_6H_5COO^-Na^+ + H_2O$$
 [2]

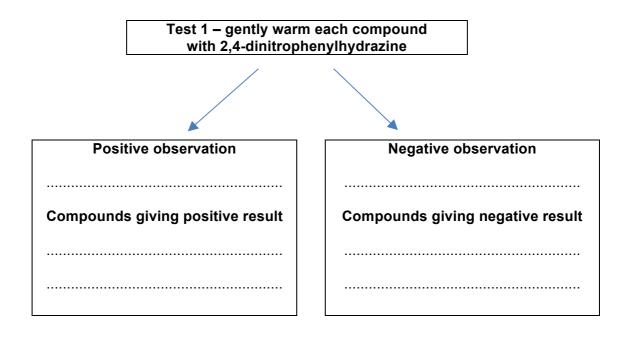
(b) 5.00 g of benzoic acid was added to 50 cm³ of NaOH solution, with the alkali in excess. The maximum temperature increase in the solution was 10.3 °C. Calculate the enthalpy change for this reaction.

The specific heat capacity of the solution is 4.18 J g^{-1} °C⁻¹ and you should assume that 1.0 cm³ of the solution has a mass of 1.0 g.

[3]

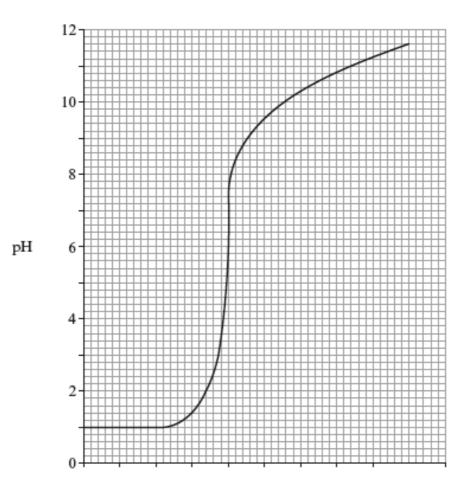
7

Enthalpy change = _____ kJ mol^{-1}


(c) Suggest how a dry solid sample of benzoic acid could be obtained from this reaction mixture. [2]

·····

- 2. You are provided with **five** colourless liquids in separate unlabelled bottles. They are the following organic compounds.
 - ethanal
 - propanone
 - 1-chlorobutane
 - pentan-3-one
 - ethanoic acid


Plan a series of chemical tests in the form of a flow diagram by which each of the compounds can be identified. State the observations made at each stage. The first part has been done for you. [6]

6

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 94

3. *(a)* The graph below shows the change in pH during a reaction between solutions of ammonia and hydrochloric acid.

Describe the experiment that was carried out in order to obtain the data needed to plot this graph. [3]

(b) The following graph shows the change in pH when a 0.10 mol dm⁻³ solution of weak acid HA reacts with a strong base. Calculate the acid dissociation constant (K_a) of HA. Give the units, if any.

[3]

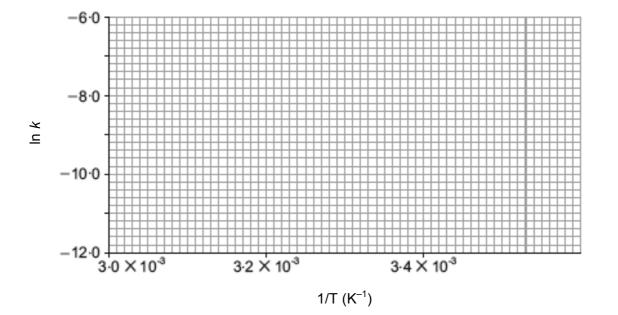
6

4. A student obtained the following graph by plotting data collected in the study of the reaction between chlorine and bromide ions.

 $Cl_2(aq)$ + $2Br^{-}(aq) \rightarrow Br_2(aq)$ + $2Cl^{-}(aq)$ 0.50 Concentration Br_2 (mol dm⁻³) 0.40 0.30 0.20 0.10 0 10 20 30 50 40 60 0 Time (s)

The rate at concentration 0.100 mol dm⁻³ is 1.17×10^{-2} mol dm⁻³s⁻¹. Draw a tangent to the curve at 0.300 mol dm⁻³ and calculate the rate at (a) (i) this point. [1]

		Rate =	mol $dm^{-3}s^{-1}$
(ii)	In terms of particles, explain w rates in (i).	hy there is a difference b	etween the two [2]
A pro Sugg	posed catalyst for the process is jest two ionic equations to show	Fe ³⁺ , which initially react how the Fe ³⁺ ion can beh	s with Br [–] ions. ave as a catalyst. [2]



(b)

(c) The activation energy of the reaction can be calculated by finding the value of the rate constant, *k*, at a series of different temperatures, T.

Temperature, T (K)	1/T (K ⁻¹)	Rate constant, k	ln <i>k</i>
290		1.51 × 10 ^{−5}	
300		5.55×10^{-5}	
310		1.67×10^{-4}	
320		5.53×10^{-4}	
330		$2.24\times\mathbf{10^{-3}}$	

(ii) The gradient, m, of the line is related to the activation energy, E_a .

m =
$$\frac{-E_a}{R}$$
 (R = 8.31 J K⁻¹ mol⁻¹)

Find the activation energy for this reaction in kJ mol⁻¹. [4]

Activation energy = kJ mol⁻¹

11

GCE AS/A LEVEL CHEMISTRY

Data Booklet

Infrared absorption values

Bond	Wavenumber (cm ⁻¹)
C-Br	500 to 600
C—CI	650 to 800
c—o	1000 to 1300
c=c	1620 to 1670
c=o	1650 to 1750
C≡N	2100 to 2250
C—H	2800 to 3100
O—H (carboxylic acid)	2500 to 3200 (very broad)
O-H (alcohol/phenol)	3200 to 3550 (broad)
N—H	3300 to 3500

¹H NMR chemical shifts relative to TMS=0

Type of proton	Chemical shift, δ (ppm)
$-CH_3$	0.1 to 2.0
R-CH ₃	0.9
R-CH ₂ -R	1.3
$CH_3 - C \equiv N$	2.0
сн₃−с⊂́О	2.0 to 2.5
-CH2-C	2.0 to 3.0
	2.2 to 2.3
R-CH ₂ CI	3.3 to 4.3
R—OH	4.5 *
-C=CH-CO	5.8 to 6.5
⊘−сн=с	6.5 to 7.5
О-он	7.0 *
⊘́—он R—с ^{∉0} н	9.8 *
R−C ^{©O} OH	11.0 *

*variable figure dependent on concentration and solvent

¹³C NMR chemical shifts relative to TMS=0 Type of carbon Chemical shift, δ (ppm) _____C______ 5 to 40 R—Ċ—CI 10 to 70 $\mathbf{R} - \mathbf{C} -$ 20 to 50 R-C-N 25 to 60 ___o____ 50 to 90 `_c=c(90 to 150 110 to 125 $R - C \equiv N$ 110 to 160 R—C—(carboxylic acid/ester) 160 to 185

R—C— (aldehyde / ketone) 190 to 220

							Ξ	THE PERIODIC TABLE	RIOL	DIC T	TABL	щ							
		7					Group	dnu					ო	4	5	9	2	0	
Period	s Block	ڑ کۆ																	
•	1.01 1																	4.00 H	
-	Hydrogen						Key	y relative					,		p Bl	p Block		Helium 2	
2	6.94 Lİ Lithium	9.01 Be Bervllium				Ś	Symbol Name	mass					10.8 Boron	Carbon	14.0 Nitrogen	16.0 Oxvaen	19.0 F Fluorine	20.2 Neon	
	e	4					-	number					5	9	7	œ	6	10	
ო	23.0 Na Sodium 11	24.3 Mg 12	Ļ				d Block	х Х				Î	27.0 Al Aluminium 13	28.1 Silicon 14	31.0 Phosphorus 15	32.1 Sulfur 16	35.5 CI Chlorine	40.0 Ar Argon 18	
~	39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	^{83.8} Kr	
t	Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	-	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36	
Ľ	85.5 Rb	^{87.6} Sr	^{88.9}	91.2 Zr	92.9 Nb	95.9 Mo	^{98.9} Tc	101 Ru	⁵⁰ Rh	106 Pd	Ag Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	127 	131 Xe	
C	Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54	
9	133 Cs	137 Ba		179 Hf		184 V	Re Re	190 Os		195 Pt		Hg	204 TI	207 Pb	209 Bi	(210) Po	(210) At	⁽²²²⁾ Rn	
	Caesium 55	Barium 56	57	Hafnium 72	lantalum 73	T4	Khenium 75	Osmium 76	ndium 77	Platinum 78	Gold 79	Mercury 80	1 hallium 81	82 82	Bismuth 83	Polonium 84	Astatine 85	Kadon 86	
٢	⁽²²³⁾ Fr	(226) Ra	AC **																
-	Francium 87	Radium 88	Actinium 89	,						f Block	ock						,		
		► Lan	 Lanthanoid 	40 94 0	₽₽	44 Nd	Pm (147)	¹⁵⁰ Sm	⁽¹⁵³⁾ Eu	157 Gd	159 Tb	DV 163	165 Ho	167 Er	169 Tm	۲ ¹³	175 Lu		
		ele	elements	Cerium 58	Preseodymium 59	Neodymium 60	Promethium 61	F	ε	Gadolnium 64	E	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	F	Lutetium 71		
		► Ac	 Actinoid elements 	д ²³	⁽²³¹⁾ Pa	238 U	(237) Np	(242) Pu			⁽²⁴⁵⁾ BK	Cf (251)			(256) Md	(254) No	(257) Lr		
		;		Thonium 90	Protactinium 91	Uranium 92	E	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Calfonium 98	Einsteinium 99	Fermium 100	Mendelevium 101	E	Lawencium 103		

AS UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from questions where a banded mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked. Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer. Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded. cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

AS UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

MARK SCHEME

Section A

	Question	Marking datails			Marks a	available		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.		1.5 × 10 ⁻² (accept 15 × 10 ⁻³)		1		1	1	
2.	(a)	rate of the forward reaction is equal to the rate of the reverse reaction	1			1		
	(b)	no change in properties (named property)	1			1		
3.	(a)	C ₂ N ₂		1		1		
	(b)	CN		1		1		
4.		oxidation states $SF_6 \rightarrow +6$; $H_2S \rightarrow -2$; $S \rightarrow 0$ all 3 correct (1) oxidation state of S in SF_6 decreases which is reduction therefore H_2S must be reducing agent (1)		2		2		
5.		$[H^{+}] = 0.02$ (1) pH = 1.7 (1)		1 1		2	1	2
		award (2) for correct answer only (cao)						
6.		9.0 ± 0.2		1				
	<u> </u>	Section A total	2	8	0	10	2	2

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 106

Section B

	<u></u>	estion	Marking dataila			Marks a	vailable		
	QL	lestion	Marking details	A01	AO2	AO3	Total	Maths	Prac
7.	(a)	(i)	electrons exist in shells	1			1		
		(ii)	fourth electron attracted much more strongly by the nucleus (1) fourth electron is closer to the nucleus / has less shielding from inner electrons (1)		2		2		
	(b)	(i)	Be point plotted between B and C Ne point plotted between F and He	1			1		
		(ii)	$Be(g) \rightarrow Be^+(g) + e^-$		1		1		
		(iii)	extra electron in oxygen paired in an orbital (1)						
			greater electron-electron repulsion (1)	2			2		
	(C)	(i)	significant changes in successive ionisation energies seen in part <i>(a)</i> (1) big fall from He to Li / general increase from Li to Ne in						
			part (b) (1)	2			2		
		(ii)	part (b) provides additional evidence i.e. for the existence of orbitals			1	1		

	0	estion	Marking details			Marks a	vailable		
	QU	lestion		AO1	AO2	AO3	Total	Maths	Prac
7.	(d)	(i)	$f = c / \lambda = 3.28 \times 10^{15}$ (1)		1				
			E = hf (1)	1				1	
			2.17×10^{-18} (1)		1		3	1	
			error carried forward (ecf) possible award (3) for cao						
		(ii)	for 1 mol = $N_A \times 2.17 \times 10^{-18} = 1305024$ (1)					1	
			energy = 1305 (1)		2		2		
			ecf possible award (2) for cao						
		(iii)	ionisation energy	1			1		
	<u>ı </u>		Question 7 total	8	7	1	16	3	0

	Question			Marking dataila	Marks available					
	Que	suon		Marking details volumetric flask / standard flask	AO1 1	AO2	AO3	Total	Maths	Prac 1
8.	(a)	(i)								
		(ii)		identification of 23.95 as an anomalous result (1)			1			
				23.15 cm ³ (1)		1		2		2
				award (2) for correct answer only (cao) award (1) for correctly calculated mean based on all four titres						
		(iii)	I	$n(HCI) = 2.315 \times 10^{-3}$ (1)						
				$n(Na_2CO_3) = 1.16 \times 10^{-3}$ (1)		2		2	2	
			II	$n(Na_2CO_3) = 1.16 \times 10^{-2}$ (1)						
				mass = $0.0116 \times 106 = 1.23 \text{g}$ (1)						
				% by mass = $(1.23 / 2.05) \times 100 = 60\%$ (1)		3		3	3	
	(b)	(i)		only mass of solid needed / all carbonate precipitated out of solution			1	1		1
		(ii)		$n(BaCO_3) = 1.15 \times 10^{-2}$ (1)						
				from equation $n(Na_2CO_3) = 1.15 \times 10^{-2}$ (1)						
				mass of Na ₂ CO ₃ = 1.22g % by mass = $(1.22 / 2.05) \times 100 = 60\%$ (1)			3	3	3	

		stion	Marking details			Marks a	vailable		
	Que	5000		A01	AO2	AO3	Total	Maths	Prac
8.	(c)	(i)	titration gives more accurate value as it is a mean value calculated from concurrent results / uses more accurate or more precise apparatus or technique			1	1		1
		(ii)	repeat precipitation / wash precipitate / heat to constant mass / use a more precise balance			2	2		2
			any 2 for (1) each						
			Question 8 total	1	6	8	15	8	7

	0	stion		Marking dataila	ing details Marks available					
	Que	Suon		Marking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(a)	(i)		B (1) conducts when molten (1)	2			2		2
		(ii)	Ι	A and E	1			1		
			II	melting point – no mark diamond has four strong covalent bonds holding each carbon in place – lot of energy needed to overcome (1) iodine has weak id-id forces between molecules – require much less energy to overcome (1)	1			2		
		(iii)		solubility in water (1) sodium chloride soluble – electrostatic forces between ions and polar water molecules strong enough to overcome electrostatic forces inside the lattice (1) iodine insoluble – weak id-id forces between separate molecules too weak to overcome hydrogen bonding between water molecules (1)	1	1		3		

Question	Marking details		Marks available AO1 AO2 AO3 Total Maths P 2 4 6 <td< th=""><th></th></td<>				
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
Question 9. (b)	Marking details Indicative content • BF ₃ is trigonal planar • 3 bonding pairs and no lone pairs • NH ₃ trigonal pyramidal • 3 bonding pairs and one lone pair • extra lone pair on N which is absent from B • different number of electron pairs around central atom 5-6 marks Each point included; clarity in description of bonding/lone pairs The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Both shapes described/drawn/named; reference to bonding most of the key elements of the indicative content account including most of the key elements of the indicative content account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 1-2 marks Beference to both molecules; link between number of electron pairs and shape				Total	Maths	Prac
	Reference to both molecules; link between number of electron pairs and shape The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit.						

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 112

	0	stion	Marking dataila		Marks available				
	Que	Suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(C)	(i)	coordinate / dative (covalent)	1			1		
		(ii)	109.5°	1			1		
		(iii)	4 bonding pairs on B (3 + extra coordinate bonding pair)			1	1		
			Question 9 total	11	5	1	17	0	2

C	Ques	tion		Marking details	Marks available AO1 AO2 AO3 Total Maths F 1 <td< th=""><th></th></td<>					
					AO1	AO2	AO3	Total	Maths	Prac
10.	(a)	(i)		$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$		1		1		
		(ii)		oxidation state of Br goes from –1 to 0 (1) which is oxidation therefore chlorine must be the oxidising agent (1)	1	1		2		
				accept oxidation state of CI goes from 0 to –1 which is reduction (1) oxidising agents are reduced in reaction (1)						
		(iii)		iodine is a larger molecule (1) greater id-id forces than bromine (1)	2			2		
	(b)	(i)		peak at 127(1)peak at 254(1)ignore peak heights			2	2		
		(ii)		must contain an isotope with a higher relative mass than the stable ¹²⁷ I isotope			1	1		
	(C)	(i)	I	cloudy solution (1) bubbles (1)	2			2		2
			П	$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$		1		1		
			Ш	no reaction / very slow formation of bubbles	1			1		1
		(ii)	Ι	n(HCI) = 0.0392 from equation $n(Ca) = 0.0196$ (1)						
				mass = 0.784 g (1)		2		2	2	2
			II	0.470 dm ³		1		1	1	1
<u> </u>				Question 10 total	6	6	3	15	3	6

(Ques	tion	Marking details			Marks a	vailable				
			Marking details	A01	AO2	AO3	Maths	Prac			
11.	(a)		accepts a proton /H ⁺	1			1				
	(b)	(i)	fewer gas particles in products (1)								
			equilibrium shifts towards products to reduce pressure (1)		2		2				
		(ii)	equilibrium shifts towards products (1)								
			ammonia replaced (1)		2		2				
	(c)		rate of reverse endothermic reaction increases		1						
			equilibrium shifts towards reactants therefore $K_{\rm c}$ decreases			1	2				
			Question 11 total	1	5	1	7	0	0		

AS UNIT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

				BULUNILU		
Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	2	8	0	10	2	2
7.	8	7	1	16	3	0
8.	1	6	8	15	8	7
9.	11	5	1	17	0	2
10.	6	6	3	15	3	6
11.	1	5	1	7	0	0
TOTAL	29	37	14	80	16	17

SUMMARY OF ASSESSMENT OBJECTIVES

AS UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from questions where a banded mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

AS UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

MARK SCHEME

Section A

	Question	Marking dataila	Marks av	vailable				
	Luestion	Marking details	A01	AO2	AO3	Total	Maths	Prac
1.	(a)	$\Delta H_2 + \Delta H_3 - \Delta H_1$		1		1		
	(b)	$1/_2N_2(g) + 1/_2O_2(g) \rightarrow NO(g)$		1		1		
2.	(a)	n(C) = 3.33; n(H) = 6.63; n(O) = 3.33 (1)						
		CH ₂ O (1)		2		2	2	
	(b)	C ₆ H ₁₂ O ₆		1		1		
3.	(a)	due to the presence of two different groups on each carbon of the C=C bond	1			1		
	(b)	the bonds of the two isomers are identical / only the arrangement in space has changed between the two isomers		1		1		
4.				1		1		

Questi	on Marking details			Marks a	vailable		
Questi		A01	AO2	AO3	Total	Maths	Prac
5.	damage to heart / liver etc.	1			1		
	accept other sensible answers						
6.	н СN сс н соосн ₃		1		1		
	Section A total	2	8	0	10	2	0

Section B

	Ques	tion		Marking dataila			Marks a	vailable		
	Ques	suon		Marking details	A01	AO2	AO3	Total	Maths	Prac
7.	(a)	(i)		$CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$		1		1		
		(ii)	Ι	2 pentyl radicals (1) combine to form decane / in termination reaction (1)		2		2		
				credit 2 marks for correct equation e.g. $2 \cdot C_5 H_{11} \rightarrow C_{10} H_{22}$						
			II	no C—CI bond (1)						
				at 650cm ⁻¹ (1)		2		2		
		(iii)		$n = \frac{pV}{RT} = \frac{105000 \times 0.001}{8.31 \times 308} $ (1)	1				1	
				M = 30.0 (1)		1			1	
				error carried forward (ecf) possible award (2) for correct answer only (cao)						
				C ₂ H ₆ / ethane (1)			1	3		
	(b)			rate increases as bond gets weaker i.e. CI to Br to I bond polarity (1) rate increases as bond gets more polar i.e. I to Br to CI (1)			2	2		

	0	stion	Marking details			Marks a	available		
	Que	SUON		AO1	AO2	AO3	Total	Maths	Prac
7.	7. (c)	(i)	bond energy (1) since data shows that rate increases from CI to Br to I (1)			2	2		
		(ii)	 any two for (1) each up to max 2 try an identical experiment with a different halogenoalkane e.g. halogenobutane repeat experiment try a control experiment 			2	2		2
	<u> </u>	<u> </u>	Question 7 total	1	6	7	14	2	2

	Ques	tion	Marking details		Marks availableAO1AO2AO3TotalMaths1111113111311131222211221122				
	Ques	SUOI		AO1	AO2	AO3	Total	Maths	Prac
8.	(a)	(i)	labelled axes with units (1) at least 5 points plotted correctly – within half a small square (1) appropriate curve drawn (1)	1 1		1	3		3
		(ii)	colorimetry method (1) calibrate colorimeter with iodine solution of known concentration (1) measure light passing through to determine concentration at intervals (1)	1			3		3
		(iii)	more particles have an energy greater than the activation energy (1) greater fraction of collisions are effective (1)	2			2		
		(iv)	0.0102 mol dm ⁻³ (1) this is the end concentration of I_2 and these species are present in a 1:1 ratio (1)			2	2		
		(v)	0.005 (1) mol dm ⁻³ min ⁻¹ (1)	1	1		2	2	
	(b)		activation energy for catalysed reaction marked to the left of E_a on plot (1) more particles have an energy greater than the activation energy / greater fraction of collisions are effective therefore rate increases (1)	2			2		
	<u>I</u>		Question 8 total	8	3	3	14	4	6

		stion	Marking details			Marks a	vailable		
	Que	Suon	Warking details	AO1	AO2	AO3	Total	Maths	Prac
9.	(a)	(i)	$M_{\rm r}({\rm C}_{\rm 9}{\rm H}_{\rm 20})=128~(1)$						
			$1.563 \times 10^{-3} \text{mol}$ (1)		2		2	1	
		(ii)	temperature increase = 30.7 °C (1)		1				
			$50 \times 4.18 \times 30.7$ (1)	1				1	
			$\Delta H = -4105 \text{ kJ mol}^{-1}$ (1)		1		3	1	3
		(iii)	heat loss (1)		1				
			can be reduced by increasing insulation e.g. lagging calorimeter or putting lid on it (1)			1	2		2
	(b)	(i)	14 O ₂ 9 CO ₂ 10 H ₂ O		1		1		
			all must be correct						
		(ii)	bonds broken = 2784 + 8240 + 6944 = 17968						
			bonds formed = $13374 + 20(O-H)$ (1) both required						
			4666 = [13374 + 20(O—H)] – 17968 (1)						
			$(O-H) = 463 \text{ kJ mol}^{-1}$ (1)		3		3	3	
		(iii)	the enthalpy of the O—H bond in other compounds is slightly different	1			1		
			Question 9 total	2	9	1	12	6	5

	Ques	tion	Marking dataila			Marks a	vailable		
	Jues	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10.	(a)	(i)	NaOH in ethanol (1)						
			propene (1)	2			2		2
-		(ii)	sodium / potassium dichromate(VI) (1)						
			oxidation (1)	2			2		2
	(b)	(i)	n(C) = 5.18; n(H) = 10.2; n(O) = 1.73 (1)		1				
			ratio = 3:6:1 which is consistent with formula (ratio = 6:12:2) (1)			1	2	2	

Question	Marking details			Marks a	vailable		
Question		A01	AO2	AO3	Total	Maths	Prac
10. (b) (ii)	Indicative content • $\delta 1.3 = R-CH_2-R$ $\delta 2.1 = -CH_2-C=O$ $\delta 4.0 = -CH_2-O$ • IR peaks for C-H and C=O but not O-H • sweet smelling suggests ester • 2 compounds from part (<i>a</i>) are propan-1-ol and propanoic acid • structure is $CH_3CH_2COOCH_2CH_2CH_3$ 5-6 marks Correct structure given; reference to all information provided The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Spectral data interpreted correctly; structure given fits interpretation The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 1-2 marks Two correct conclusions drawn from spectral data or other information provided The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit.		3	3	6		1
(iii)	distillation (1) boiling temperature of product much lower than either reactant (1) no hydrogen bonding in product (present in both reactants) (1)	1	2		3		3
<u> </u>	Question 10 total	5	6	4	15	2	8

(Quest	tion		Marking details			Marks a	vailable		
•	QUES	lion			A01	AO2	AO3	Total	Maths	Prac
11.		(i)		dipoles marked (1) electron movement from H–Br onto Br and electron movement from C=C to H [*] (1) correct carbonium ion formed (1) electrophilic addition (1)	4			4		
		(ii)		atom of Br can be added to either carbon of C=C (1) secondary carbonium ions are more stable than primary carbonium ions (1)	2			2		
	(b)			IR 1715 cm ⁻¹ due to C=O (1) δ 9.8 due to R–CHO (1) molecule must be propanal (1) arises from compound C as aldehydes formed from		1 1	1			
	(0)	(i)		primary alcohols only (1)	1		1	4		1
	(c)	(i)		orange/brown to colourless (1) 1,2,3-tribromobutane (1) either order	I	1		2		I
		(ii)	Ι	white precipitate due to the use of HCI			1	1		1
			II	(warm) with aqueous NaOH (1) acidify with HNO ₃ then add aqueous AgNO ₃ (1)	2			2		2
				Question 11 total	9	3	3	15	0	4

AS UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

SUMMARY OF ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	2	8	0	10	2	0
7.	1	6	7	14	2	2
8.	8	3	3	14	4	6
9.	2	9	1	12	6	5
10.	5	6	4	15	2	8
11.	9	3	3	15	0	4
TOTAL	27	35	18	80	16	25

A2 UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from questions where a banded mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

A2 UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

Section A

	Quantian	Marking dataila	Marks Available							
	Question	Marking details	A01	AO2	AO3	Total	Maths	Prac		
1.		CH_3COOH and NH_4^+ identified – both required		1		1				
2.		potassium fluoride and rubidium fluoride – both required accept correct formulae do not accept if lithium fluoride included do not accept 'potassium' and 'rubidium'		1		1				
3.	(a)	$3CI_2$ + 6NaOH \rightarrow 5NaCl + (1)NaClO ₃ + $3H_2O$		1		1				
	(b)	<u>chlorine</u> oxidation state at <u>start is 0</u> and at <u>end is</u> -1 and +5 so it has been both oxidised and reduced		1		1				
4.		HCl at 1 mol dm ⁻³ or H_2SO_4 at 0.5 mol dm ⁻³	1			1		1		
5.		lowest Se(s) Br ₂ (I) Kr(g) highest		1		1				
6.		$Cr_2O_7^{2-}$ + 14H ⁺ + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺		1		1				
7.		silicon possess available <i>d</i> -orbitals whilst there are none in the outer shell of carbon (therefore oxygen cannot bond)	1			1				
8.		oxygen 20.7% (1) formula CrO_2Cl_2 (1)		2		2	1			
		Section A total	2	8	0	10	1	1		

Section B

	Ques	tion		Marking details			Marks A	vailabl	е	
	Ques				A01	AO2	AO3	Total	Maths	Prac
9.	(a)	(i)		outer shell of electrons is not full / has fewer than 8 electrons	1			1		
		(ii)		NH ₃ .BCl ₃ (1) coordinate bond forms between lone pair on N and electron deficient	1					
				BCI ₃ (1)	1			2		
	(b)	(i)		 any two for (1) each up to max 2 delocalised electrons in graphite and none in BN (1) all atoms the same in graphite, alternating in BN (1) atoms in planes lie above each other (in register) for BN and out of 						
				register for graphite (1)	2			2		
		(ii)	Ι	to ensure all the water molecules have been removed	1			1		1
			II	moles water = $0.053 / 18.02 = 2.94 \times 10^{-3}$ (1)						
				moles carbon = 3.592 / 12 = 0.299 (1)						
				ratio C: H ₂ O = 102: 1 [or 1: 9.82×10^{-3}] (1)		3		3	3	

	0	tion	Marking dataila			Marks A	Availabl	е	
	Ques	suon	Marking details	A01	AO2	AO3	Total	Maths	Prac
9.	(C)	(i)	$K_{\rm p} = \frac{P_{PCl_2} P_{Cl_2}}{P_{PCl_5}}$		1				
			at equilibrium $P_{PCI3} = 6.0 \times 10^3$ Pa and $P_{PCI5} = 6.4 \times 10^3$ Pa (1)			1		1	
			$K_{\rm p} = 5625$ (1)		1			1	
			error carried forward (ecf) possible award (3) for correct answer only (cao)						
			Pa (1)	1			4	1	
		(ii)	increase in K_p indicates an increase in products when temperature is increased (1)						
			endothermic [need reason for mark] (1)			2	2		
		(iii)	phosphorus can expand its octet but nitrogen cannot / phosphorus has <i>d</i> -orbitals in its valence shell nitrogen does not (1)						
			this allows phosphorus to have more than 10 electrons in outer shell and form PCl_{5} (1)	2			2		
		<u> </u>	Question 9 total	9	5	3	17	6	1

•					Marks A	vailable		
Ques	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
10 . <i>(a)</i>		Cu – all boxes doubly filled apart from one in last (1) Cu^{2+} – all boxes doubly filled apart from empty 4s and one in one <i>d</i> -orbital (1)	1	1		2		
(b)		 Indicative content [CoCl₄]²⁻ is complex formed [colur of complex is blue <i>d</i>-orbitals split by ligands electrons absorb light to move from lower to higher level colour seen is colour not absorbed points 3 and 4 can be obtained from a labelled diagram 	6			6		

	Question	Marking dataila			Marks A	Available	ļ		
	Question	Marking details	A01	AO2	AO3	Total	Maths	Prac	
10.	(b)	5-6 marks Each point included; no reference to emission of blue light The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout.							
		3-4 marks Colour and formula of species; reference to splitting of <i>d</i> -orbitals by ligands; absorption of energy corresponding to difference between levels The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.							
		1-2 marks Colour or formula of species; splitting of <i>d</i> -orbitals; electrons move to another energy level The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary.							
		0 marks The candidate does not make any attempt or give an answer worthy of credit.							

	0	stion	Marking dataila			le			
	Que	Stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
10.	(c)	(i)	$f = \frac{3.00 \times 10^8}{515 \times 10^{-9}} = 5.83 \times 10^{14} (1)$	1					
			$E = 3.87 \times 10^{-19}$ (1)		1				
			233 kJ mol ⁻¹ (1)			1	3	3	
			ecf possible						
			award (3) for cao						
		(ii)	agree because total percentage of cobalt decreases / is less than 100 % after the addition of ammonia (1)		1				
			the equation shows cobalt will be in one of the two species / if the equation was correct the percentage in each complex would always add up to 100% (1)			1		1	
			always add up to 100 % (1)			I		1	
			there must be another cobalt complex / an intermediate (1)			1	3		
	[Question 10 total	8	3	3	14	4	1

Question	Marking dataila			3 4 7			
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
11. <i>(a)</i>	lilac – contains potassium ionsapple green – contains barium ionsboth needed	1			1		1
	Solution A copper(II) sulfate Solution B potassium iodide Solution C lead(II) nitrate Solution D barium chloride Solution E sodium hydroxide all five correct (4) four correct (3) three correct (2) two correct (1) any three for (1) up to max 3 • bright yellow precipitate is probably lead(II) iodide (1) • so solution C must contain lead ions or iodide ions (1) • solution E suggests an amphoteric metal (1) • this confirms that solution C contains lead(II) ions (1)		3	4	7		7
	Question 11 total	1	3	4	8	0	8

Question			Marking dataila	Marks Available							
	Ques	suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
12.	(a)		$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O / 1 \text{ mol } H_2SO_4 : 2 \text{ mol } NaOH (1)$		1						
			$0.341 \mathrm{mol}\mathrm{dm}^{-3}$ (1)		1			1			
			answer given to 3 significant figures (1)			1	3	1	3		
	(b)		$[H^{+}] = 10^{-pH} (1)$		1						
			$[H^{+}] = 3.1623 \times 10^{-14} (1)$		1						
			[NaOH] = $1.00 \times 10^{-14} \div 3.1623 \times 10^{-14} = 0.316 \text{ mol dm}^{-3}$		1		3	3	3		
	(c)		titration is more precise as a change of 0.1 in pH gives a large change in concentration / the resolution of the burette or pipette is much greater than that of the pH probe			1	1		1		
	(d)	(i)	phenolphthalein as the titration curve will be vertical in the range 8.2-10.0 / will not be vertical in the range 2.9-6.3 (1)			1	1		1		
		(ii)	after addition of half the volume of sodium hydroxide there will be equal concentrations of ethanoic acid and sodium ethanoate / $[ACID] = [SALT] / [H^+] = K_a$ (1)	1							
			pH = 4.7 (1)		1		2	2			
	(e)		any pH value in the range 3.0-6.8 (1)				2				
			the ammonium ion exists in equilibrium with NH_3 and H^+ so it increases $[H^+]$ in solution / some NH_4^+ breaks down releasing H^+ (1)		2						
	Question 12 total				8	3	12	7	8		

	0	tion	Marking dataila	Marks Available							
	Ques	lion	Marking details	A01	AO2	AO3	Total	Maths	Prac		
13.	(a)	(i)	$\Delta_{\rm f} H_{\rm products} = [(2 \times -482) + (8 \times -286) + (2 \times -436)] (1)$								
			$\Delta_{\rm f} H_{\rm reactants} = [(2 \times -813) + (5 \times -188) + (6 \times -92)]$ (1)								
			$\Delta H = -4016 - (-3118) = -1006 \text{ kJ mol}^{-1} (1)$								
			$\Delta G = \Delta H - T\Delta S = -1006 - [298 \times (9 \div 1000)] = -1009 \text{ kJ mol}^{-1} (1)$					4			
			emf for the reaction = $1.52 - 0.68 = 0.84 V$ (1)		5			4			
			reaction is feasible as the value of ΔG is negative and the value of the emf is positive (1)			1	6				
		(ii)	electrochemical as this is a solution reaction whilst the Gibbs' free energy data is for the solids/liquids (1)								
			should use standard conditions of 1 mol dm^{-3} concentration (1) and 298K temperature (1)			3	3		3		

	Ques	tion		Marking details	Marks Available							
	Ques	stion			A01	AO2	AO3	Total	Maths	Prac		
13.	(b)	(i)	I	increase in pH by one unit is a decrease in $[H^+]$ by a factor of 10 (1) between lines 1 and 2 $[H^+]$ decreases by a factor of 10 and the rate decreases by a factor of 10 therefore it is first order with respect to $[H^+]$ (1)			2	2	2			
			II	rate = $k [H^+]^1 [CH_3COCH_3]^1 [Br_2]^0$ (1) [H ⁺] = 10^{-pH} for any relevant pH value (1) $k = 1.7 \times 10^{-3}$ (1) units = mol ⁻¹ dm ³ s ⁻¹ (1)	1	1 1	1	4	4			
			111	incorrect – gains no credit credit for explanation rate equation shows that rate determining step must involve one CH ₃ COCH ₃ and one H ⁺ (which is not present in this mechanism) (2) or rate equation shows that rate determining step must involve CH ₃ COCH ₃ and H ⁺ (which is not present in this mechanism) (1)			2	2				
		(ii)		less energy needed as you can use lower temperature or pressure (1) homogenous catalysts in same phase as reactants so difficult to separate (1)	2			2		1		
	·	•		Question 13 total	3	7	9	19	10	4		

A2 UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

SUMMARY OF ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	2	8	0	10	1	1
9.	9	5	3	17	6	1
10.	8	3	3	14	4	1
11.	1	3	4	8	0	8
12.	1	8	3	12	7	8
13.	3	7	9	19	10	4
TOTAL	24	34	22	80	28	23

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from questions where a banded mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

Section A

	Question	Marking dataile	Marks available							
	Question	Marking details	A01	AO2	AO3	Total	Maths	Prac		
1.		C ₆ H ₅ NH ₂ or other primary aromatic amine	1			1				
2.		A	1			1				
3.		melts over a range of lower temperatures	1			1				
4.		total peak area excluding compound D is 96 – equivalent to 80 % peak area compound D (20%) is 96 / 4 = 24		1		1				
5.		phenylmethylamine / benzylamine		1		1				
6.	(a)	nucleophilic addition	1			1				
	(b)	butanal		1		1				
7.		C ₆ H ₆		1		1				
8.		least soluble B A D C most soluble		1		1				
9.		2-methylpropan-1-ol		1		1				
		Section A total	4	6	0	10	0	0		

Section B

	Question	Marking details			Marks a	available	ł	
			A01	AO2	AO3	Total	Maths	Prac
10.	(a)	C ₉ H ₂₀		1		1		
	(b)	use of a catalyst will not affect the enthalpy change of reaction (1) Hess's law states that the overall enthalpy change is independent of the pathway taken (1)	2			2		
	(c)	$\begin{array}{c c} H & H \\ Br - C - C - C \\ H & H \\ H$			1	2		
	(d)	propenoic acid contains a C=C bond at 1620-1670 cm ⁻¹ (not present in 3-oxetanone) (1) propenoic acid contains an O–H bond at 2500-3550 cm ⁻¹ (not present in 3-oxetanone) (1)		2		2		

	Ques	tion	Marking dataila	Marks available							
	Ques	uon	Marking details	A01	AO2	AO3	Total	Maths	Prac		
10.	(e)		M_r sodium propenoate94.0 (1)moles of propenoic acid = $\frac{38.3 \times 1000}{72.0}$ = 532 \therefore moles of sodium propenoate = 532 \therefore mass of sodium propenoate = 532×94.0 = 50.0 (kg) (1)alternatively M_r sodium propenoate = 94.0 (1)mass of sodium propenoate = $\frac{38.3 \times 94.0}{72.0}$ = 50.0 (kg) (1)		2		2	1			
	(f)		$ \begin{array}{c c} H & H \\ $		1		1				

	Quest	tion	Marking details	Marks available						
	Quesi			A01	AO2	AO3	Total	Maths	Prac	
10.	(g)		for example $CH_2=CHC O H^{\delta+}$ $H H^{\delta+}$ $H H^{\delta+}$ $H^{\delta+}$ $H^{\delta+}$ $H^{\delta+}$ $H^{\delta+}$ $H^{\delta+}$ $H^{\delta+}$ $CH=CH_2$ correct atoms involved in hydrogen bonding (1) lone pairs and dipoles correctly shown (1)		2		2			
	(h)		 any three valid considerations for (1) each up to max 3 for example cost of propane v cost of propene yield of propenenitrile in each method effectiveness of catalyst(s) 			3	3			
		I	Question 10 total	2	8	5	15	1	0	

	0	otion		Marking dataila	Marks available								
	Que	stion		Marking details	A01	AO2	AO3	Total	Maths	Prac			
11.	(a)	(i)		butane-1,4-diol / butan-1,4-dial (1)		1							
				acidified potassium dichromate / H^+ , $Cr_2O_7^{2-}$ (1)	1			2		1			
		(ii)	1	7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) 7 × 180 g glucose give 12 × 118 g butane-1,4-dicarboxylic acid ∴ 1 g glucose gives $\frac{12 \times 118}{7 \times 180}$ g butane-1,4-dicarboxylic acid (1) 7 × 180 = 1.12 (kg) (1) or 7 mol glucose give 12 mol butane-1,4-dicarboxylic acid (1) 1 mol glucose gives 12/7 mol butane-1,4-dicarboxylic acid = 1.71 mol moles glucose used = 1000/180 = 5.56 moles butane-1,4-dicarboxylic acid obtained = 1.71 × 5.56 = 9.51 (1) ∴ mass of butane-1,4-dicarboxylic acid = $\frac{9.51 \times 118}{1000}$ = 1.12 kg (1) 1000		3		3	3				
			II	carbon dioxide is used and this helps to reduce the greenhouse effect			1	1					

	0	stion	Marking dataila			vailable	ailable		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
11.	(b)	(i)	mass $H_2SO_4 = 294 \text{ g}$ (1) volume $H_2SO_4 = 160 \text{ cm}^3$ (1)		2		2	2	
			ecf possible award (2) for cao						
		(ii)	e.g. reflux for longer (1) use stronger / weaker / more aqueous sulfuric acid (1)			2	2		2
		(iii)	there will be less dipole / dipole forces between molecules of 2-methylfuran than between molecules of furfural (1) therefore less energy (1) will be needed to separate them / overcomes these intermolecular forces, giving a lower boiling temperature for 2-methylfuran (1)		3		3		
		(iv)	absorption strongest around 430 nm in the blue-violet (1) low absorption for yellow / in the green to orange region (1)			2	2		2
I	I	<u> </u>	Question 11 total	1	9	5	15	5	5

	Question (a) (i) (b) (ii)	Marking dataila			vailable				
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
12.	(a)	(i)	$C_6H_5-CH(COOH)-NH-C(O)CH(NH_2)C_6H_5$		1		1		
		(ii)	$C_{6}H_{5} - CH_{2} - C - COOH$		1		1		
	(b)		 3-phenylpropanoic acid has largely van der Waals forces between molecules (1) hydrogen bonding between the acid groups has only a limited effect as these are a small part of a larger molecule, therefore melting temperature is relatively low (1) in 3-phenyllactic acid the hydrogen bonding has a greater contribution to the overall intermolecular bonding as both –OH and –COOH groups can participate, therefore its melting temperature is relatively higher (1) phenylalanine exists as a zwitterion structure as a solid this structure has a strongly bonded ionic style lattice and therefore its melting temperature is melting temperature is much higher / very high (1) 		1	1	4		

	0	stion	Marking dataila			Marks a	available		
	Que	SUON	Marking details	A01	AO2	AO3	Total	Maths	Prac
12.	(c)	(i)	Tollens' (1) silver mirror with phenylethanal but no change with phenylpyruvic acid (1) accept Fehling's test or sodium hydrogencarbonate test	1	1		2		2
		(ii)	2-phenylethanol M_r 122 122 – 91 \rightarrow 31 (1) (loss of 31 could be CH ₂ OH ⁺), fragment could be C ₆ H ₅ CH ₂ ⁺ (1)			2	2		
		(iii)	reagents used are I ₂ /NaOH or NaOCI/KI (1)	1					
			yellow solid forms (1)	1					
			only 1-phenylethanol has a CH ₃ C=O or CH ₃ CH(OH) group present (1)			1	3		2
	1	1 1	Question 12 total	3	5	5	13	0	4

		stion	Marking dataila			Marks a	available		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
13.	(a)		benzene-1,4-dicarboxylic acid / terephthalic acid		1		1		
	(b)		bond between the chlorine atom(s) and the ring is strong(er) (1) because of the interaction of chlorine's lone pair of electrons with the π -electron system of the ring (1)	2			2		
	(C)		e.g. AlCl ₃ / FeCl ₃ / Fe (1)	1					
			+ $2Cl_2 \rightarrow$ + $2HCI$ (1)		1		2		
	(d)	(i)	purple solution	1			1		1
		(ii)	white precipitate / solid (1)	1					
			2,6-dibromo-4-chloro-3,5-dimethylphenol (1)		1		2		2
		(iii)	$\begin{array}{rcl} \mbox{PCMX} & \rightarrow \ C_8 H_9 ClO \ \rightarrow \ M_r \ 157 \ / \ 156.6 \ \ (1) \\ 250 \ cm^3 \ \rightarrow \ 12.0 \ g & \therefore \ 1000 \ cm^3 \ \rightarrow \ 48.0 \ g \\ \mbox{molar concentration} \ = \ 48.0 \ / \ 157 \ = \ 0.307 \ \ (mol \ dm^{-3}) \ \ (1) \\ \mbox{ecf possible} \\ \mbox{award} \ \ (2) \ \ for \ cao \end{array}$		2		2	2	
		(iv)	three peaks (1)as there are three different environments for the protons (1)peak areas are: CH_3 protons – 6CH aromatic protons – 2OH proton – 1(1)	1	1	1	3		
<u> </u>		<u> </u>	Question 13 total	6	6	1	13	2	3

	0	otion	Marking dataila			Marks a	available		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
14.	(a)	(i)	$CH_3COOH + C_4H_9OH \rightarrow CH_3COOC_4H_9 + H_2O$		1		1		
		(ii)	moles of butan-1-ol 0.20 moles of ethanoic acid 0.15 (1) butan-1-ol is in excess and yield should be based on the CH ₃ COOH (1) from the equation (mole ratio 1:1) 0.15 moles of the ester should be formed = $0.15 \times 116 = 17.4 \text{ g}$ (1)		1	1	3	3	3
		(iii)	CH ₃ COOH is neutralised by sodium hydrogencarbonate (1) giving bubbles (of carbon dioxide) (1)	2			2		2
		(iv)	IR spectrum (1) \rightarrow OH peak at 2500-3550 cm ⁻¹ (1) or mass spectrum (1) \rightarrow molecular ion at m/z 74 (1)			2	2		2

	Question	Marking dataila			Marks a	available		
	Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
14.	(b)	 Indicative content <i>M</i>_r of cyclohexanone C₆H₁₀O is 98.1 % oxygen is <u>16 × 100</u> = 16.3 <u>98.1</u> this information agrees with the compound suggested cyclohexanone is a ketone and will be reduced to a secondary alcohol; this does not fit the compound given cyclohexanone does not contain a C=C and will not therefore decolourise aqueous bromine cyclohexanone has three proton environments and therefore will not give 6 discrete peaks in the ¹H NMR spectrum cyclohexanone has four carbon environments and will give four separate peaks in its ¹³C spectrum; this does not fit the compound suggested 	3		3	6	2	1
		 5-6 marks Correct conclusions relating to all information The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Oxygen content calculated; correct conclusions relating to one reaction and one piece of spectral data The candidate constructs a coherent account including most of the key elements of the indicative content and little irrelevant material. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound. 						

Question	Relative mass of compound calculated; correct conclusion relating to one react or one piece of spectral data The candidate attempts to link at least two relevant points from the indicative	Marks available						
Question		A01	AO2	AO3	Total	Maths	Prac	
14. (b)	Relative mass of compound calculated; correct conclusion relating to one reaction or one piece of spectral data The candidate attempts to link at least two relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and							
	Question 14 total	5	3	6	14	5	8	

A2 UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Section A	4	6	0	10	0	0
10.	2	8	5	15	1	0
11.	1	9	5	15	5	5
12.	3	5	5	13	0	4
13.	6	6	1	13	2	3
14.	5	3	6	14	5	8
TOTAL	21	37	22	80	13	20

EXPERIMENTAL TASK

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

The mark total should be entered onto the grid on the front cover.

Marking rules

All work should be seen to have been marked.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

EXPERIMENTAL TASK

MARK SCHEME

<u>ekill</u>	Marking dataila		Marks available					
Skill	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
Teacher-awarded marks	working safely (1) efficient use of time (1) dilution (1)	3			3		3	
Weighings	all masses recorded to precision of balance and precise mass of aspirin correctly calculated (should be at least 3 decimal places)	1			1		1	
Titration data – recording	appropriate tables drawn (1) titles and units included (1) at least three sets of readings for titration A (1) at least three sets of readings for titration B (1) all readings recorded to 0.05 cm ³ (1)		5		5		5	
Titration data – means	concordant titres selected for titration A (1) concordant titres selected for titration B (1) mean values for both titres calculated (1)			3	3		3	

Skill	Marking dataila			Marks a	vailable		
36111	Marking details	A01	AO2	AO3	Total	Maths	Prac
Titration data – accuracy	titration A – comparison with teacher's results						
	$\pm 0.2 \mathrm{cm}^3$ 5 marks						
	$\pm 0.3 \mathrm{cm}^3$ 4 marks						
	$\pm 0.4 \mathrm{cm}^3$ 3 marks						
	$\pm 0.5 \mathrm{cm}^3$ 2 marks						
	$\pm 0.6 \mathrm{cm}^3$ 1 mark						
	titration B – comparison with teacher's results corrected for						
	different masses of aspirin						
	$\pm 0.2 \mathrm{cm}^3$ 5 marks						
	$\pm 0.3 \text{ cm}^3$ 4 marks						
	$\pm 0.4 \text{ cm}^3$ 3 marks						
	$\pm 0.5 \text{ cm}^3$ 2 marks						
	$\pm 0.6 \text{ cm}^3$ 1 mark		10		10		10
			10		10		10
Analysis of results	concentration of NaOH solution (2)						
	number of moles of NaOH in $25.0 \mathrm{cm}^3$ (1)		3				
	number of moles of NaOH in excess (1)						
	number of moles of NaOH reacted (1)						
	number of moles of 2-ethanoyloxybenzenecarboxylic acid in						
	the tablets (1)						
	mass of 2-ethanoyloxybenzenecarboxylic acid in the						
	tablets (1)						
	percentage of 2-ethanoyloxybenzenecarboxylic acid in the			5	8	5	8
	tablets (1)			5	0	5	0
	Total	4	18	8	30	5	30

PRACTICAL METHODS AND ANALYSIS TASK

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

PRACTICAL METHODS AND ANALYSIS TASK

MARK SCHEME

	Question	Marking details			Marks a	available		
	Question		A01	AO2	AO3	Total	Maths	Prac
1.	(a)	simple diagram – marks awarded for labelling any two for (1) each up to max 2 • calorimeter / polystyrene cup • thermometer						
		 sodium hydroxide (solution) 	2			2		2
	(b)	$\frac{m \times c \times \Delta T}{n}$ (1) accept $\frac{50 \times 4.18 \times 10.3}{0.041}$	1				1	
		$M_{\rm r}({\rm C_6H_5COOH}) = 122$ (1)		1				
		$\Delta H = -52.53$ (1) must be negative value		1		3		3
	(C)	add dilute acid (1) filter and dry (1)	1	1		2		2
	· · · · ·	Question 1 total	4	3	0	7	1	7

Question	Marking dataila			Marks a	vailable		
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
2.	 positive observation – orange precipitate negative observation – no change/precipitate both required (1) compounds giving positive result – ethanal, propanone and pentan-3-one all three and no others required (1) for compounds giving positive 2,4-DNPH test positive silver mirror test (or Fehling's test) for ethanal (1) iodoform test gives yellow precipitate with propanone (1) pentan-3-one is the other (1) for compounds giving negative 2,4-DNPH test sodium bicarbonate causes effervescence in ethanoic acid but not in 1-chlorobutane (1) or (warming with) sodium hydroxide followed by nitric acid and Ag+(aq) produces white precipitate with 1-chlorobutane but not 		2	AU3		Maths	Prac
	with ethanoic acid (1)			4	6		6
	Question 2 total	0	2	4	6	0	6

	Questi	ion	Marking dataila			Marks a	vailable		
	Quest	.1011	Marking details	A01	AO2	AO3	Total	Maths	Prac
3.	(a)		ammonia added to hydrochloric acid (1) hydrochloric acid in (conical) flask / beaker and ammonia in burette (1)	1		1			
			measure pH with pH probe/ meter after each (small volume) addition / continuous measurement with a data logger or computer (1)	1			3		3
	(b)		from graph pH = 2.8 $[H^{+}] = 1.58 \times 10^{-3} (1)$ $K_{a} = \frac{(1.58 \times 10^{-3})^{2}}{0.1} = 2.50 \times 10^{-5} (1)$ award (2) for correct answer only ecf possible accept answer based on pK _a = pH at half neutralisation		1	1			
			mol dm ⁻³ (1)	1			3	3	
	ı — I —	I	Question 3 total	3	1	2	6	3	3

	Ques	otion	Marking dataila			Marks a	vailable		
	Ques	suon	Marking details	A01	AO2	AO3	Total	Maths	Prac
4.	(a)	(i)	0.0055 [accept 0.0053 – 0.0057]		1		1	1	1
		(ii)	concentration of reactants decrease at time proceeds (1)			1			
			therefore frequency of successful collisions / number of successful collisions per unit time decreases (1)	1			1		
	(b)		$2Br^{-} + 2Fe^{3+} \rightarrow Br_2 + 2Fe^{2+}$ (1)						
			$Cl_2 + 2Fe^{2^+} \rightarrow 2Cl^- + 2Fe^{3^+}$ (1)			2	2		
	(C)	(i)	1/T and ln k values calculated (1)		1				
			all points plotted correctly (1)	1			2	2	
		(ii)	appropriate readings correctly made from graph e.g. $y = 3.8$; $x = 0.32 \times 10^{-3}$ (1)		1				
			gradient = -12000 ± 500 (1) (accept positive value)		1				
			$E_a = 12000 \times 8.31 = 99720$ (1)			1			
			$E_a = 97 (kJ mol^{-1})$ (1)			1	4	4	4
			award (4) for cao award (3) for negative value or answer in J mol ⁻¹ ecf possible						
		<u> </u>	Question 4 total	2	4	5	11	7	5

SUMMARY OF ASSESSMENT OBJECTIVES

	Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
Experimental Task	Total	4	18	8	30	5	30
	1.	4	3	0	7	1	7
Practical	2.	0	2	4	6	0	6
Methods and Analysis Task	3.	3	1	2	6	3	3
	4.	2	4	5	11	7	5
	Total	9	10	11	30	11	21

|--|

WJEC GCE A and AS Level Chemistry SAMs from 2015/MLJ 09.03.15